• Title/Summary/Keyword: landfill area

Search Result 219, Processing Time 0.022 seconds

Process gas purification using cyclone recirculation and cooling process (싸이클론 재순환, 냉각공정을 이용한 공정가스 정제 연구)

  • Kim, Ju-Hoe;Jo, Woo-Jin;Choi, Young-Tae;Jo, Young-Min;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2018
  • Renewable energy has been of interests in the area of modern alternative fuels. Biogas is produced in waste landfill sites through anaerobic digestion processes, including hydrolysis, acidogenesis, organic acid fermentation (acetogenesis), and methane fermentation (methanogenesis). High contents of fine dust and moisture limited its utilization for direct combustion, town gas and vehicle fuel. Thus, this study proposed a new design for a cooling device using a centrifugal cyclone for simultaneous removal of fine dust and moisture as a pretreatment in the purification processes. A heat exchanger and an ID fan, which are installed inside and outside of the cyclone, in order to cool the humid gas below the freezing point and form a foggy mist. Such an atmosphere enhanced to capture fine dust as recirculating the cold mist flow. The water removal rate was 80.8% at a relative humidity of 95%, and the particle removal efficiency was 98.3% for $2.5{\mu}m$. Simultaneous removal efficiency was 70.8% and 99.6% for particle and moisture respectively.

Nitrogen Budgets for South Korea in 2005 (2005년 대한민국 질소 유입 및 유출 수지)

  • Yun, Dong-Min;Park, Sin-Hyung;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.97-105
    • /
    • 2008
  • Nitrogen budgets in Korea in 2005 were estimated using a mass balance approach. Major nitrogen fluxes were divided into three sections: cities, agricultural area, and forest. Nitrogen inputs were chemical and biological fixation, dry and wet deposition, imported food and feed, while crop uptake, volatilization, denitrification, leaching, runoff, and forest consumption were nitrogen outputs. Non-point source(NPS) pollution budgets were also estimated by mass balance approach. Annual total nitrogen inputs budgets were 1,442,254 ton$\cdot$yr$^{-1}$, and outputs were 814,415 ton$\cdot$yr$^{-1}$. Approximately 19.4% of nitrogen input leaked to river and seawater as NPS pollution. It contains nitrogen input 21 percent more than the previous research in 2002. Especially the change of government plans affect nitrogen budget. As a result, in the output field, the whole nitrogen amount due to landfill reduce from 20 percent to less than 1 percent.

Preparation of the Hollow Fiber Type Perovskite Catalyst for Methane Complete Oxidation (메탄의 완전산화 반응을 위한 중공사형 페롭스카이트 촉매 제조)

  • Lee, Seong Woon;Kim, Eun Ju;Lee, Hong Joo;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.297-302
    • /
    • 2018
  • Bead type and hollow fiber type catalyst (HFC, Hollow Fiber type Catalyst) was prepared by $La_{0.1}Sr_{0.9}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF1928) perovskite powder catalyst which showed excellent methane complete oxidation characteristics through previous studies. The HFC have a cylindrical shape with an empty interior, and pores can be formed through Phase inversion method so the specific surface area can be remarkably improved. In the case of the bead type catalyst prepared by adding Methyl Cellulose (MC), $SrCO_3$ was produced in addition to the original catalyst composition of LSCF1928 due to the reaction of $CO_2$ emitted from MC and Sr of the catalyst. In the case of the HFC, a single phase perovskite structure was obtained without impurities. The HFC calcined at $700{\sim}900^{\circ}C$ showed pore structure of finger-sponge-finger structure, and 99.9% oxygen conversion rate was achieved through complete oxidation of methane at $475^{\circ}C$. Air gap and spinning pressure condition were changed to control the HFC pore. 2 cm air gap and 7 bar spinning pressure showed the best catalytic performance and achieved oxygen conversion rates of more than 70.65%, 93.01%, and 99.99% at $425^{\circ}C$, $450^{\circ}C$ and $475^{\circ}C$, respectively.

Integration of Geographic Information System and Air Dispersion Model (지리정보체계와 대기확산의 통합)

  • Kim, Myung-Jin;Han, Eui-Jung;Kang, In-Goo;Kim, Jeong-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.5 no.1
    • /
    • pp.61-67
    • /
    • 1996
  • Environmental Impact Assessment (EIA) in Korea has worked toward environmental conservation and decision making since the Environmental Impact Statement of 1981. In order to implement the EIA process effectively, we have developed a system for and various methods of EIA. Among these methods, the Geographic Information System (GIS), which was introduced recently in Korea, can be used to integrate geographic and attribute data effectively. So GIS begins to increase the necessity of the application in EIA process. This study includes the integration method of the GIS and air dispersion model on the odor impact assessment of $NH_3$ emission in landfill sites. First, it computes surface values by grids using the Digital Elevation Model (DEM). Second, it presents predicted data considering topography and climate by grids. Third, it shows the overlaying analysis of the administrative map including population and odor predictive data. The results could systematically analyze impact areas, and assess residential impact by alternatives. Integration analysis of the air predictive model and GIS as a residential area assessment can support negotiations of public and proponent in EIA.

  • PDF

Environmental Assessment and Characteristic of Refuse Derived Fuel by Mixed Biomass with Binder (바이오매스에 바인더 첨가에 따른 폐기물 고형연료 특성 및 환경성평가)

  • Lee, Hyung-Don;Cho, Joon-Hyung;Kim, In-Deuk;Kim, Yun-Soo;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.336-345
    • /
    • 2011
  • The total area of forest land in Korea is 64.2%, and significant forest resources can continuously be produced. However our country didn't separate the recyclable waste wood and was illegal landfill or incinerated. In this study, waste-wood and rice husk of biomass and low-grade-anthracite made refuse derived fuel by mixing and compressing. In addition, the binding effect of binders and additives were analyzed. Physical and chemical characteristics of manufactured refuse derived fuel were analyzed and evaluated suitability by compared with quality standards. A result of change with compressed and relaxed density, added 20% anthracite and 10% rice husk is optimal density change and average density increased large range when 20 wt.% P.V.A., guargum, molasses and 10 wt.% starch were added. All fuel samples be distributed over 3,500 kcal/kg LHV and grade of No. 3~4 fuels appeared. A result of the characteristics of physical and chemical compressed biomass refuse derived fuel with addictive, 12.9% of durability improvement appeared when is mixing asphalt and 5.8% of durability improvement appeared when is mixing rice bran by pretreatment of NaOH 5%.

A Study on the Possibility of Using Cement Raw Material through Chemical Composition Analysis of Pond Ash (화력 발전소 매립 석탄회의 화학성분 분석을 통한 시멘트 원료 활용 가능성 연구)

  • Lee, Jae-Seung;Noh, Sang-Kyun;Suh, Jung-Il;Shin, Hong-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.180-188
    • /
    • 2020
  • To replace Japanese coal ash used in the domestic cement production and to recycle large quantities of domestic pond ash, it is essential to develop the technologies for quality control of cement by using the domestic pond ash. Thus, in this study, the feasibility of using the pond ash as a raw material for cement was investigated through chemical composition and microstructure analysis. As a result, most of the domestic pond ash contained slightly more Fe2O3, chloride, and unburned carbon contents than Japanese coal ash. In particular, the contents of chloride were considerably low in the pond ash that was transferred to fresh water or collected from surface of landfill area. However, since circulating fluidized bed boiler coal ash had relatively high SO3 contents causing durability problems of cement, it was not suitable for use as a raw material for cement. Thus, to replace Japanese coal ash with the domestic pond ash, it is necessary to introduce the adjustment of mixture proportion of cement raw materials and the process of removing chloride in the pond ash.

A Study on Compaction Characteristics of Surplus Soils in Mountainous Areas in Busan, GyungNam Province (부산 경남지역 산지 현장 발생토의 다짐특성 연구)

  • Jung-Uk Kang;Gi-Ju Noh;Tae-Hyung Kim;In-Gon Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.63-70
    • /
    • 2023
  • Most of the industrial complexes and housing complexes in Busan and Gyeongnam were constructed by developing mountainous areas, except for some landfill areas. During the development process, the surplus soil for site development was mainly used as the embankment material. In the field, however, even if the material of the material changes during the embankment work for site development, for convenience reasons such as construction period and site conditions, the material property test and compaction test are not additionally conducted for the embankment material, and quality control is conducted. In this study, physical property tests and compaction tests were conducted on surplus soils in mountainous areas in Busan, GyungNam Province and then regression analysis was performed on the data. In addition, a comparative analysis was conducted along with existing studies in Korea. The surplus soils at the sites in Busan and Gyeongnam were mainly weathered soils of granites, and were classified into clayey sand (SC) and silty sand (SM). As a result of regression analysis of the compaction characteristics according to the content of coarse and fine soils, the correlation between them was very high. Using the relational formula as a result of this study, it will be very useful for compaction management of the surplus soils in the field.

A Study for Drying of Sewage Sludge through Immersion Frying Using Used Oil (폐유를 이용한 하수슬러지 유중 건조 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Hong, Ji-Eun;Jang, Dong-Soon;Ohm, Tae-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.694-699
    • /
    • 2008
  • Considering the severe regulation associated with sludge treatment such as direct landfill and ocean dumping, there is no doubt in that an advanced study for the proper treatment of sludge is urgently needed in near feature. As one of viable method for sludge treatment, fry-drying of sludge by waste oil has been investigated in this study. The fundamental mechanism of this drying method lies in the phenomenon of rapid moisture escape in the sludge pore toward oil media. This is caused by the severe pressure gradient formed by the rapid oil heating between sludge and oil. As part of research effort of fry-drying using waste oil, a series of basic study has been made experimentally to obtain typical drying curves as function of important parameters such as drying temperature, drying time, oil type and geometrical shape of sludge formed. Based on this study, a number of useful conclusion can be drawn as following. The fry-drying method by oil immersion was found quite effective in the removal efficiency of sludge moisture, in general, the moisture content decreases significantly after 10 minutes and the whole moisture content was less than 5% after 14 minutes regardless of the drying temperature. The increase of oil temperature up to 140$^{\circ}C$ favors significantly for the removal of moisture but there was no visible difference above 140$^{\circ}C$. As expected, the decrease of diameter in sludge was efficient in drying due to the increased surface area per unit volume. Further, the effect of oil property by the change of oil type was noted. To be specific, for the case of engine oil the efficiency was found to be remarkably delayed in moisture evaporation compared with that of vegetable oil due to the increased viscosity of engine oil. It produced a result of increasing the evaporation of moisture largely relatively high in the drying temperature over 140$^{\circ}C$ compared with the drying temperature 120$^{\circ}C$ drying temperature as the drying time passed. Accordingly, the drying temperature is considered desirable as keeping over 140$^{\circ}C$ regardless of a sort of used oil.

A Study on Leaching Characteristics of $Cr^{6+}$ in Cement Grout Materials (시멘트 그라우트재에서 $Cr^{6+}$용출특성에 관한 연구)

  • 김동우;이재영;천병식
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.62-69
    • /
    • 2003
  • The aim of research is the evaluation of the $Cr^{6+}$ emission features of the liquid injection through emission experiments in varying conditions, based on a field-mixing ratio. The results showed that the content of $Cr^{6+}$ content in cement measured had an Ordinary Potland Cement (OPC) of 25.3 mg/kg, which constitute the largest portion among the other materials. Likewise, the emission experiment of homo-gel and sand-gel generally satisfied the standard of KSLT (Korea Standard Leaching Test) in waste of 1.5 mg/L, but in case of the standard of KSLT in soil the emission of OPC $Cr^{6+}$ of 4.85 mg/kg. These conditions is a little exceeded the criteria in the ‘Ga’ area in terms of Korea Soil Environmental Preservation Law. In addition, results generated by the mock-up injection facilities revealed that $Cr^{6+}$ emission increased as Water/Cement and injection pressure increased. At injection pressure higher than 4 kg/㎤, $Cr^{6+}$ emission exceeded the water preservation standard of 0.5 mg/L. Similarly, a pattern experiment of C $r^{6+}$ emission according to pH was conducted, in order to evaluate the $Cr^{6+}$ emission features of grout materials in leachate below pH 5 such as pH 4 acid rain or landfill. Results show that $Cr^{6+}$ emission dramatically increased in high acidic or basic state. It indicates that $Cr^{6+}$ emission will probably increase in an environment where grout materials are injected. On the other hand, concentration of leachate was determined in areas where grout materials are used. The results show that the concentration of emission in an ultra purity condition does not manifest intensity, and is affected in the OPC>MC>SC order. It means that the pollutants or $Cr^{6+}$ emission increases with decreasing concentration. As such, $Cr^{6+}$ emission will probably exceed the countermeasure criteria according to the types of gout materials. Similarly, high pressure or injection will cause increased $Cr^{6+}$ emission. Therefore, the selection of materials or mixing ratio should be considered in general as well as according to specific industries, based on the strength and pH of $Cr^{6+}$ emission.