• Title/Summary/Keyword: land-sea breeze circulation

Search Result 48, Processing Time 0.018 seconds

A Study on the Dispersion of Air Pollutants in Local Circulation of Mesoscale (중규모 국지 순환에서 대기 오염 물질의 확산에 관한 연구)

  • 이화운;오은주
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.39-47
    • /
    • 1994
  • Dispersion characteristics of air pollutants in the mountainous coastal area are investigated in considering with the mesoscale local circulations using a two dimensional numerical model with two kinds of topograpy of 500m and 300m. In the model, land-sea breezes and mountain-valley wind are mainly considered under the condition of the absence of large scale prevailing flow in the circulation analysis, and the pollutants dispersion is traced by the Lagrangian methods. According to the results, the wind velocity is affected by topography and is stronger in the case of 500m height mountain than that of 300m, the Pollutants that source is near the coast transported over the mountain and dispersed to behind inland area. It is classified that the topography change control affects the wind velocity and the circulations. The pollutants that source is different transported and concentrated to behind inland and/or diffused to the sea area by the combination of the wind system with topographic changes. The results can be applied to the air pollution control with the arrangement design of industrial area and the planning of coastal developments.

  • PDF

Numerical Modeling for the Effect of High-rise Buildings on Meteorological Fields over the Coastal Area Using Urbanized MM5 (중/도시규모 기상모델을 이용한 고층건물군이 연안도시기상장에 미치는 영향 수치모델링)

  • Hwang, Mi-Kyoung;Oh, In-Bo;Kim, Yoo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.495-505
    • /
    • 2012
  • Modeling the effects of high-rise buildings on thermo-dynamic conditions and meteorological fields over a coastal urban area was conducted using the modified meso-urban meteorological model (Urbanized MM5; uMM5) with the urban canopy parameterization (UCP) and the high-resolution inputs (urban morphology, land-use/land-cover sub-grid distribution, and high-quality digital elevation model data sets). Sensitivity simulations was performed during a typical sea-breeze episode (4~8 August 2006). Comparison between simulations with real urban morphology and changed urban morphology (i.e. high-rise buildings to low residential houses) showed that high-rise buildings could play an important role in urban heat island and land-sea breeze circulation. The major changes in urban meteorologic conditions are followings: significant increase in daytime temperature nearly by $1.0^{\circ}C$ due to sensible heat flux emitted from high density residential houses, decrease in nighttime temperature nearly by $1.0^{\circ}C$ because of the reduction in the storage heat flux emitted from high-rise buildings, and large increase in wind speed (maximum 2 m $s^{-1}$) during the daytime due to lessen drag-force or increased gradient temperature over coastal area.

Numerical Study on the Impact of SST Spacial Distribution on Regional Circulation (상세 해수면 온도자료의 반영에 따른 국지 기상정 개선에 관한 수치연구)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Leem, Heon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.304-315
    • /
    • 2009
  • Numerical simulations were carried out to understand the effect of Sea Surface Temperature (SST) spatial distribution on regional circulation. A three-dimensional non-hydrostatic atmospheric model RAMS, version 6.0, was applied to examine the impact of SST forcing on regional circulation. New Generation Sea Surface Temperature (NGSST) data were implemented to RAMS to compare the results of modeling with default SST data. Several numerical experiments have been undertaken to evaluate the effect of SST for initialization. First was the case with NGSST data (Case NG), second was the case with RAMS monthly data (Case RM) and third was the case with seasonally averaged RAMS monthly data (Case RS). Case NG showed accurate spatial distributions of SST but, the results of RM and RS were $3{\sim}4^{\circ}C$ lower than buoy observation data. By analyzing practical sea surface conditions, large difference in horizontal temperature and wind field for each run were revealed. Case RM and Case RS showed similar horizontal and vertical distributions of temperature and wind field but, Case NG estimated the intensity of sea breeze weakly and land breeze strongly. These differences were due to the difference of the temperature gradient caused by different spatial distributions of SST. Diurnal variations of temperature and wind speed for Case NG indicated great agreement with the observation data and statistics such as root mean squared error, index of agreement, regression were also better than Case RM and Case RS.

A Numerical Experiments on the Atmospheric Circulation over a Complex terrain around Coastal Area. Part I : A Verification of Proprietyh of Local Circulation Model Using the Linear Theory (연안부근 복잡지형의 대기유동장 수치실험 I -선형이론을 이용한 국지순환모형의 타당성 검토-)

  • 이화운;김유근;정우식
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.555-558
    • /
    • 1999
  • A sea/land breeze circulation system and a regional scale circulation system are formed at a region which has complex terrain around coastal area and affect to the dispersion and advection of air pollutants. Therefore, it is important that atmospheric circulation model should be well designed for the simulation of regional dispersion of air pollutants. For this, Local Circulation Model, LCM which has an ability of high resolution is used. To verify the propriety of a LCM, we compared the simulation result of LCM with an exact solution of a linear theory over a simple topography. Since they presented almost the same value and pattern of a vertical velocity at the level of 1 km, we had a reliance of a LCM. For the prediction of dispersion and advection of air pollutants, the wind filed should be calculated with high accuracy. A numerical simulation using LCM will provide more accurate results over a complex terrain around coastal area.

  • PDF

A Study on the Application of Local-scale Air Mass Recirculation Factor to High-concentration PM2.5 Episode in Coastal Areas (연안 지역 고농도 PM2.5 사례에 대한 국지 규모 공기괴 재순환 지수 적용 연구)

  • Jung-woo Yoo;Ji Seon Kim;Eun Ji Kim;Soon-Hwan Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.8
    • /
    • pp.521-531
    • /
    • 2023
  • This study analyzed the impact of recirculation on high-concentration PM2.5 in the coastal area. Through the analysis of observational data, it was observed that the development of sea breeze led to an increase in PM2.5 and SO42- concentrations. Hysplit backward trajectory analysis confirmed the occurrence of air mass recirculation. Results from WRF and CMAQ numerical simulations indicated that pollutants transported from land to sea during the night were re-transported to the land by daytime sea breeze, leading to high-concentration PM2.5 in Busan. To quantitatively investigate the recirculation a recirculation factor (RF) was calculated, showing an increase in RF values during high-concentration PM2.5 episodes. However, the RF values varied slightly depending on the time resolution of meteorological data used for the calculations. This variation was attributed to the terrain characteristics at observation sites. Additionally, during long-range transported days leading to nationwide high-concentration PM2.5 events, synoptic-scale circulation dominated, resulting in weaker correlation between PM2.5 concentration and RF values. This study enhances the understanding of the influence of recirculation on air pollution. However, it is important to consider the impact of temporal resolution and terrain characteristics when using RF for evaluating recirculation during episodes of air pollution.

A Study on Effect of Improvement Plan for Wind Energy Forecasting (풍력 발전 예보 정확도 향상을 위한 국지 기상장 수치모의 개선 방안 연구)

  • Jung, Ji-A;Lee, Hwa-Woon;Jeon, Won-Bae;Kim, Dong-Hyeok;Kim, Hyun-Goo;Kang, Young-Heack
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • This study investigates the impact of enhanced regional meteorological fields on improvement of wind energy forecasting accuracy in the southwestern coast of the Korean Peninsula. To clarify the effect of detailed surface boundary data and application of analysis nudging technique on simulated meteorological fields, several WRF simulations were carried out. Case_LT, which is a simulation with high resolution terrain height and land use data, shows the most remarkable accuracy improvement along the shoreline mainly due to modified surface characteristics such as albedo, roughness length and thermal inertia. Case_RS with high resolution SST data shows accurate SST distributions compared to observation data, and they led to change in land and sea breeze circulation. Case_GN, grid nudging applied simulation, also shows changed temperature and wind fields. Especially, the application of grid nudging dominantly influences on the change of horizontal wind components in comparison with vertical wind component.

Modeling the effects of land-sea breeze circulation on ozone distribution in coastal urban area. (연안 도시지역 해륙풍순환이 오존분포에 미치는 영향에 관한 수치모의)

  • 황미경;김유근;오인보
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.303-304
    • /
    • 2003
  • 연안도시의 경우 해양 배경농도의 영향과 내륙과 비교해 강한 풍속조건이 형성됨으로 오존농도의 일변화 폭이 적으며 야간에 농도상승 현상이 빈번히 나타난다. 또한 일반적으로 여름철 주로 발생하는 해풍에 의해 고농도를 경험하게 되는데, 이는 해풍역전으로 인한 연직혼합의 억제와 (Lu and Turco, 1994) 해풍전선의 이동 (McElroy and Smith, 1991), 해풍의 내륙침투 시 생기는 Fumigation 효과(Entwistle, et al., 1997; Zhang et al., 1998) 등으로 설명되어 진다. 아울러 해륙풍순환으로 생기는 오전의 대기정체현상은 오후의 오존의 광화학 생성과 축적에 기여하게 되며 (Liu et al., 1994), 해풍 발달 시에는 오존 및 전구물질이 내륙 수송되어 풍하측 지역에 고농도가 나타나게 된다(Zhang et al., 1998). (중략)

  • PDF

Numerical Simulation for Diffusion and Movement of Air Pollutants in Atmospheric Flow Coastal Urban Region (연안도시지역의 대기유동장에서 대기오염물질의 확산과 이동에 관한 수치모의)

  • 이화운;김유근
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.437-449
    • /
    • 1997
  • To predict diffusion and movement of k pollutants In coastal urban region a numerical simulation shouts be consider atmospheric flow field with land-sea breeze, mountain-valley wand and urban effects. In this study we used Lagrangian [article dispersion method In the atmospheric flow field of Pusan coastal region to depict diffusion and movement of the Pollutants emoted from particular sources and employed two grid system, one for large scale calculating region with the coarse mesh grid (CMG) and the other for the small region with the One mesh 914 (FMG). It was found that the dispersion pattern of the pollutants followed local circulation system in coastal urban area and wale air pollutants exhausted from Sasang moved Into Baekyang and Jang moutain, air pollutants from Janglim moved into Hwameong-dong region.

  • PDF

Characteristics of Ozone Advection in Vertical Observation Analysis Around Complex Coastal Area (연직관측자료를 통한 복잡 연안지역의 오존 이류특성)

  • Lee, Hwa-Woon;Park, Soon-Young;Lee, Soon-Hwan;Leem, Heon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.57-74
    • /
    • 2009
  • In order to clarify the vertical ozone distribution in planetary boundary layer of coastal area with complex terrain, an observation campaign was carried out around Gwangyang Bay with dense pollutant emission sources during two days from June, 4 2007. For this observation are Radiosonde, SODAR(SOnic Detection And Ranging) and Tethered ozone sonde were employed. The surface meteorological and photochemical observation data provided by AWS (Automatic Weather System) and AQMS (Air Quality Monitoring System) were also applied for analysis. Synoptic condition is strongly associated with lower level ozone distribution in complex terrain coastal area. Since mesoscale circulation induced by difference of characteristics of land and sea and orographic forcing is predominant under calm synoptic condition, vertical distribution of ozone is complicate and vertical ozone concentration greatly fluctuated. However in second day when synoptic influence become strong, ozone concentration in lower levels is vertically uniform regardless of observation level. This results in vertical observation indicates that vertical ozone distribution is often determined by synoptic condition and also affects surface ozone concentration.

Dispersion of Maritime Air Pollutants from Harbor Area into Major Port Cities Considering Characteristics of Local Wind Circulation in Korea -A Case Study of Sea and Land Breezes during Summer- (지역 순환풍 발생 특성 이해를 통한 국내 주요항만 발생 대기오염물질의 항구도시 영향 범위 분석 -여름철 해륙풍 모사를 중심으로-)

  • Kwon, Yongbum;Cho, Inhee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.721-730
    • /
    • 2021
  • Maritime air pollutants around port cities have gained a great deal of attention due to their direct impacts on regional air quality. This study aims to determine the geographical properties of sea/land breezes in different areas to discover overall ranges of maritime emission dispersion. The HOTMAC-RAPTAD modeling program was used to simulate regional-scale air dispersion considering non-linear and unsteady states during the general summer period for the target areas of the Yellow Sea (Incheon Port and Pyeongtaek·Dangjin Ports), archipelago region (Mokpo Port), South and East Sea (Busan and Masan Ports) and East Sea with mountainous area (Donghae·Mukho Ports). The resulting dispersion lengths of vessel emissions into the onshore regions around the target ports shed light on portal air quality management, because vessel emissions from the Incheon, Mokpo, Busan, and Donghae·Mukho ports were transported 27-31km (Western Seoul), 21-24km (Southern Muan), 20-26km (Gimhae and Yangsan), and 22-25km (Taebeak Mountains), respectively. Therefore, the results of this study provide useful data for regional air quality management and marine air pollution mitigation to improve the sustainability of port cities.