• Title/Summary/Keyword: land-land breeze

Search Result 114, Processing Time 0.024 seconds

Numerical Simulation for Diffusion and Movement of Air Pollutants in Atmospheric Flow Coastal Urban Region (연안도시지역의 대기유동장에서 대기오염물질의 확산과 이동에 관한 수치모의)

  • 이화운;김유근
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.437-449
    • /
    • 1997
  • To predict diffusion and movement of k pollutants In coastal urban region a numerical simulation shouts be consider atmospheric flow field with land-sea breeze, mountain-valley wand and urban effects. In this study we used Lagrangian [article dispersion method In the atmospheric flow field of Pusan coastal region to depict diffusion and movement of the Pollutants emoted from particular sources and employed two grid system, one for large scale calculating region with the coarse mesh grid (CMG) and the other for the small region with the One mesh 914 (FMG). It was found that the dispersion pattern of the pollutants followed local circulation system in coastal urban area and wale air pollutants exhausted from Sasang moved Into Baekyang and Jang moutain, air pollutants from Janglim moved into Hwameong-dong region.

  • PDF

Analysis of Wind Shear Patterns and Application of Measure-Correlate-Predict at Pohang Region (포항지역 풍속전단 형태분석과 측정-보정-예측법의 응용)

  • Kim, Hyun-Goo
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.26-33
    • /
    • 2005
  • This paper presents and overview analysis on the observed wind shear at Pohang Steel Works. focusing on diurnal patterns and the frequency of high nighttime shear at the site in case of land breeze. In addition, this paper discusses the importance of accurate shear estimation for reliable evaluation of wind energy density. In order for long-term correlation of the site, three Measure-Correlate-Predict methods were tested with Pohang wind data and it was shown that the linear MCP gives poor estimation due to the topological characteristics of complex terrain where the severe transformation of wind direction was accompanied.

  • PDF

A Numerical Experiments on the Atmospheric Circulation over a Complex terrain around Coastal Area. Part I : A Verification of Proprietyh of Local Circulation Model Using the Linear Theory (연안부근 복잡지형의 대기유동장 수치실험 I -선형이론을 이용한 국지순환모형의 타당성 검토-)

  • 이화운;김유근;정우식
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.555-558
    • /
    • 1999
  • A sea/land breeze circulation system and a regional scale circulation system are formed at a region which has complex terrain around coastal area and affect to the dispersion and advection of air pollutants. Therefore, it is important that atmospheric circulation model should be well designed for the simulation of regional dispersion of air pollutants. For this, Local Circulation Model, LCM which has an ability of high resolution is used. To verify the propriety of a LCM, we compared the simulation result of LCM with an exact solution of a linear theory over a simple topography. Since they presented almost the same value and pattern of a vertical velocity at the level of 1 km, we had a reliance of a LCM. For the prediction of dispersion and advection of air pollutants, the wind filed should be calculated with high accuracy. A numerical simulation using LCM will provide more accurate results over a complex terrain around coastal area.

  • PDF

Internal Waves and Surface Mixing Observed by CTD and Echo Sounder in the mid-eastern Yellow Sea (황해 중동부해역에서 CTD와 음향탐지기로 관측한 내부파와 표층 혼합)

  • Lee, Sang-Ho;Choi, Byoung-Ju;Jeong, Woo Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Acoustic backscatter profiles were measured by Eco-sounder along an east-west section in the mid-eastern Yellow Sea and at an anchoring station in the low salinity region off the Keum River estuary in September 2012, with observing physical water property structure by CTD. Tidal front was established around the sand ridge developed in 50 m depth region. Internal waves measured by Eco-sounder during low tide period in the eastern side of the sand ridge were nonlinear depression waves with wave height of 15 m and mean wavelength of 500 m. These waves were interpreted into tidal internal waves that were produced by tidal current flowing over the sand ridge to the southeast. When weakly non-linear soliton model was applied, propagation speed and period of these internal depression wave were 50 m/s and 16~18 min. Red tides by Dinoflagelates Cochlodinium were observed in the sea surface where strong acoustic scattering layer was raised up to 7 m. Hourly CTD profiles taken at the anchoring station off the Keum River estuary showed the halocline depth change by tidal current and land-sea breeze. When tidal current flowed strongly to the northeast during flood period and land-breeze of 7 m/s blew to the west, the halocline was temporally raised up as much as 2 m and acoustic profile images showed a complex structure in the surface layer within 5-m depth: in tens of seconds the declined acoustic structure of strong and weak scattering signals alternatively appeared with entrainment and intrusion shape. These acoustic profile structures in the surface mixed layer were observed for the first time in the coastal sea of the mid-eastern Yellow Sea. The acoustic profile images and turbidity data suggest that relatively transparent low-layer water be intruded or entrained into the turbid upper-layer water by vertical shear between flood current and land breeze-induced surface current.

An Analysis on the Characteristics of Wind Distribution in the Coast of Busan Using AWS Data (AWS 데이터를 이용한 부산 해안의 바람분포 특성 해석)

  • Seol, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.33 no.8
    • /
    • pp.549-554
    • /
    • 2009
  • Wind velocity and wind direction are very important in the viewpoint of ship's safety and stability of port structure. The characteristics of wind distribution in the coast of Busan are analyzed for 10 years from 1997 to 2006 using AWS(Automatic Weather System) data. The characteristics of wind distribution of Miryang, is not affected by the land and sea breeze are also examined to understand clearly the characteristics of wind distribution in the coast of Busan. The mean wind velocity in the coast of Busan is stronger than that of Miryang. The mean wind velocitie at Youngdo and Gadukdo stations of Busan are stronger about 2.0 times than those at IlGwang, Haeundae and Daeyeon stations. The correlation a states show that the variation tendencies of monthly mean wind velocitie in the coast of Busan are very similar. The maximum monthly mean velocitie in the coast of Busan are recorded in September. This re ult is closely related to the influence of typhoon. The maximum instantaneous wind velocitie are also strong at Youngdo and Gadukdo stations and the peaks of maximum instantaneous wind $velocit^9$ are observed mainly from August to September. In the coast of Busan, the SW'ly-NNE'ly wind are prevailing in the winter and the SW'ly and NE'ly wind are predomi snt in the spring. w that the vs of wind direction in the summer and athumn are similar with those in the spring and winter, respectively.

Spatial Distribution Patterns of Winter Daytime and Nighttime Apparent Temperature in South Korea (남한의 겨울철 주.야간 체감 온도의 공간적 분포 특성)

  • 최광용;강철성
    • Journal of the Korean Geographical Society
    • /
    • v.37 no.3
    • /
    • pp.237-246
    • /
    • 2002
  • This study classified wintertime bioclimatic zones of South Korea based on daytime and nighttime distribution of wind chill index calculated from climate data during the coldest month for latest 30 years (1971- 2000). The results show that the winter daytime and nighttime wind chill index were influenced by climatic factors such as elevation, land-sea breeze, topology, and sea currents etc. as well as climatic components such as temperature, wind speed, and sunshine, so that South Korea was divided into five bioclimatic zones; Cool day- cold night zone, Keen day- Cold night zone, Keen day-Very Cold night zone, Cold day and night zone, and Cold day-Extremely Cold night zone. Especially, coasts and island areas, except for south coast of Korea, shows Keen bioclimatic response during daytime and Very Cold bioclimatic response during nighttime. This indicates that coasts and island areas, except for south coast of Korea are affected by moonson and land-sea breeze. In addition, highly elevated Daegwallyeong shows Cold bioclimatic response during daytime and Extremely Cold during nighttime due to the influence of adiabatic temperature lapse rate and monsoon. This study offers basic data necessary to make decisions concerning insulation such as clothing and architect etc. by classifying winter bioclimatic zones of South Korea based on various daytime and nighttime distribution of wind chill.

The Analysis of Mesoscale Circulations Characteristics Caused by the Evaporation-Efficiency of Water Retention Pavement (보수성 도로 포장재의 증발효율 변화에 의한 중규모 순환장 특성 분석)

  • Kim, In-Su;Lee, Soon-Hwan;Kim, Hae-Dong;Suh, Young-Chan
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.709-720
    • /
    • 2009
  • Field observation and numerical experiments were conducted to understand the impact of water retention pavement on the surface heat budget and on the regional circulation. The numerical model applied in this study is the atmospheric dynamic model Local Circulation Model (LCM) with two dimensional grid system, and a field observation was carried out under the clear sky and calm conditions of the weather on 19 July 2007. In the field observation, the maximum value of surface temperature on pavement covered with water retention material reached the $41.2^{\circ}C$ at 1430 LST and the values was lower for $16.1^{\circ}C$ than that of asphalt without the material. The Case BET03 assumed to be 0.3 for the surface evaporation efficiency was in good agreement with the observation and its sensible and latent heat fluxes were numerically estimated to be 229 and 227 $W/m^2$, respectively. Results of the numerical experiments demonstrated that the water retention pavement tends to induce the increase of latent heat flux associated with the lower surface temperature and mixing height during the daytime. Discontinuity of latent heat caused by the water retention pavement also tends to promote the development of mesoscale circulation called as land-land breeze or country breeze.

Vertical Measurement and Analysis of Meteorological Factors Over Boseong Region Using Meteorological Drones (기상드론을 이용한 보성 지역 기상 인자의 연직 측정 및 분석)

  • Chong, Jihyo;Shin, Seungsook;Hwang, Sung Eun;Lee, Seungho;Lee, Seung-Hyeop;Kim, Baek-Jo;Kim, Seungbum
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.575-587
    • /
    • 2020
  • Meteorological phenomena are observed by the Korea Meteorological Administration in a variety of ways (e.g., surface, upper-air, marine, ocean, and aviation). However, there are limits to the meteorological observation of the planetary boundary layer (PBL) that greatly affects human life. In particular, observations using a sonde or aircraft require significant observational costs in economic terms. Therefore, the goal of this study was to measure and analyze the meteorological factors of the vertical distribution of the see-land breeze among local meteorological phenomena using meteorological drones. To investigate the spatial distribution of the see-land breeze, a same integrated meteorological sensor was mounted on each drone at three different points (seaside, bottom of mountain, and mountainside), including the Boseong tall tower (BTT) at the Boseong Standard Weather Observatory (BSWO) in the Boseong region. Vertical profile observations for air temperature, relative humidity, wind direction, wind speed, and air pressure were conducted up to 400 m every 30 minutes from 1100 LST to 1800 LST on August 4, 2018. The spatial characteristics of meteorological phenomena for temperature, relative humidity, and atmospheric pressure were not shown at the four points. Strong winds (~8 m s-1) were observed from the midpoint (~100 m) at strong solar radiation hour, and in the afternoon the wind direction changed from the upper layer at the inland area to the west wind. It is expected that the analysis results of the lower atmospheric layer observed using the meteorological drone may help to improve the weather forecast more accurately.

Severe Weather Events over Northeastern Brasil:The January 2004 Event (브라질 북동부 해안의 악기상: 2004년 1월 사례)

  • Tenorio Ricardo Sarmento;Kwon Byung-Hyuk;Molion Luiz Caries Baldicero;Calheiros Alan James Peixoto
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.897-904
    • /
    • 2006
  • The eastern coast of northeastern Brazil (NEB), a coastal land-strip up to 300 km wide and stretching out from Rio Grande do Norte $(5^{\circ}S)$ State down to the south of Bahia State $(17^{\circ}S)$, experiences different rain producing systems, such as distrubances in the south-east trade winds, frontal systems penetration, land-sea breeze circulation and local convection associated with the topography and moisture flux convergence. The annual total rainfall ranges from 600 inland to 3000 mm on the coast. Rainfall totals 5 to 12 times the focal climatic means were recorded in various regions of Alagoas state in January 2004. It was estimated that 46,000 people were homeless, with material damages exceeding US$10 million as a consequence of the ensuing floods. GOES infrared images analysis showed that the main weather system responsible for this anomalously high rainfall totals was an Upper Troposphere Cyclonic Vortex (UTCV), which formed at about a $27^{\underline{\circ}}W\;e\;12^{\underline{\circ}}S$ and remained active for the entire month of January over NEB.

Study on planetary boundary layer schemes suitable for simulation of sea surface wind in the southeastern coastal area, Korea (한반도 남동해안 해상풍 모의에 적합한 경계층 물리방안 연구)

  • Kim Yoo-Keun;Jeong Ju-Hee;Bae Joo-Hyun;Song Sang-Keun;Seo Jang-Won
    • Journal of Environmental Science International
    • /
    • v.14 no.11
    • /
    • pp.1015-1026
    • /
    • 2005
  • The southeastern coastal area of the Korean peninsula has a complex terrain including an irregular coastline and moderately high mountains. This implies that mesoscale circulations such as mountain-valley breeze and land-sea breeze can play an important role in wind field and ocean forcing. In this study, to improve the accuracy of complex coastal rind field(surface wind and sea surface wind), we carried out the sensitivity experiments based on PBL schemes in PSU/NCAR Mesoscale Model (MM5), which is being used in the operational system at Korea Meteorological Administration. Four widely used PBL parameterization schemes in sensitivity experiments were chosen: Medium-Range Forecast (MRF), High-resolution Blackadar, Eta, and Gayno-Seaman scheme. Thereafter, case(2004. 8. 26 - 8. 27) of weak-gradient flows was simulated, and the time series and the vertical profiles of the simulated wind speed and wind direction were compared with those of hourly surface observations (AWS, BUOY) and QuikSCAT data. In the simulated results, the strength of rind speed of all schemes was overestimated in complex coastal regions, while that of about four different schemes was underestimated in islands and over the sea. Sea surface wind using the Eta scheme showed the highest wind speed over the sea and its distribution was similar to the observational data. Horizontal distribution of the simulated wind direction was very similar to that of real observational data in case of all schemes. Simulated and observed vertical distribution of wind field was also similar under boundary layer(about 1 km), however the simulated wind speed was underestimated in upper layer.