• Title/Summary/Keyword: land use pattern

Search Result 285, Processing Time 0.03 seconds

Spatial distribution of particulate matters in comparison with land-use and traffic volume in Seoul, Republic of Korea (서울시 토지이용과 교통량에 따른 미세먼지의 공간분포)

  • Jeong, Jong-Chul;Lee, Peter Sang-Hoon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.123-138
    • /
    • 2018
  • To sustainably monitor air pollution in Seoul, the number of Air Pollution Monitoring Station has been gradually increased by Korea's Ministry of Environment. Although particulate matters(PM), one of the pollutants measured at the stations, have an significant influence on human body, the concentration of PM in Korea came in second among 35 OECD member countries. In this study, using the data of PM concentration from the stations, distribution maps of PM10 and PM2.5 concentrations over Seoul were generated, and spatial factors potentially related to PM distribution were investigated. Based on a circumscribed hexagon about a circle in radius of 500 meters created as a basic unit, Seoul was sectionalized and PM concentration map was generated using the interpolation technique of 'inverse distance weighting'. The distributions of PM concentrations were investigated with commuting time by administrative district and the outcome was related with land-use type and volume of traffic. Results from this analysis indicated distribution pattern of PM10 concentration was different from that of PM2.5 by administrative district and time. The distribution of PM concentration was strongly related to not only the size of business and trafficked areas among the land-use type, but also the existence of urban green. Further analysis of the relationship between the PM concentration and detailed land-use and urban green maps can be helpful to identify spatial factors which have an impact on the PM concentration on the regional scale.

Monitoring and spatio-temporal analysis of UHI effect for Mansa district of Punjab, India

  • Kaur, Rajveer;Pandey, Puneeta
    • Advances in environmental research
    • /
    • v.9 no.1
    • /
    • pp.19-39
    • /
    • 2020
  • Urban heat island (UHI) is one of the most important climatic implications of urbanization and thus a matter of key concern for environmentalists of the world in the twenty-first century. The relationship between climate and urbanization has been better understood with the introduction of thermal remote sensing. So, this study is an attempt to understand the influence of urbanization on local temperature for a small developing city. The study focuses on the investigation of intensity of atmospheric and surface urban heat island for a small urbanizing district of Punjab, India. Landsat 8 OLI/TIRS satellite data and field observations were used to examine the spatial pattern of surface and atmospheric UHI effect respectively, for the month of April, 2018. The satellite data has been used to cover the larger geographical area while field observations were taken for simultaneous and daily temperature measurements for different land use types. The significant influence of land use/land cover (LULC) patterns on UHI effect was analyzed using normalized built-up and vegetation indices (NDBI, NDVI) that were derived from remote sensing satellite data. The statistical analysis carried out for land surface temperature (LST) and LULC indicators displayed negative correlation for LST and NDVI while NDBI and LST exhibited positive correlation depicting attenuation in UHI effect by abundant vegetation. The comparison of remote sensing and in-situ observations were also carried out in the study. The research concluded in finding both nocturnal and daytime UHI effect based on diurnal air temperature observations. The study recommends the urgent need to explore and impose effective UHI mitigation measures for the sustainable urban growth.

A study on water quality change by land use change using HSPF

  • Kim, Tae Geun;Choi, Kyoung-sik
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.123-128
    • /
    • 2020
  • Non-point source pollutant load reductions were calculated using the Hydrologic Simulation Program-Fortran (HSPF) model under the assumption that landuse pattern was changed according to land purchases. Upon the simulation of non-point pollutant and areas with high land purchase ratios to select a buffer zone, the Namgang dam Reach 11, Imha dam Reach 10, and the Reach 136 watershed of the main river were found to rank high for the construction of buffer zones. Assuming that the forms of the purchased lands were changed to wetlands, biological oxygen demand (BOD) loads were changed through the HSPF model. No changes of BOD were present in the Namgang dam and the Imha dam watersheds. BOD loads in Reach 136 according to landuse change were analyzed through a flow duration analysis based on the total maximum daily loads of the United States. The flow duration analyses undertaken to examine changes in BOD of main river Reach 136 watershed indicated a shift of 0.64 kg/d from 3.16 to 2.52 during high flow. The change of BOD under the conditions of moist, mid-range and dry were 11.9%, 9% and 4.5%. At the low flow condition, the variation range in the BOD load was from 0.58 kg/d to 0.41 kg/d.

Structural Urban Landscape Changes over Time Series in Gangneung-Si (강릉시 도시 경관 구조의 시계열적 변화 연구)

  • Yeum, Jung-Hun
    • Journal of Environmental Science International
    • /
    • v.30 no.10
    • /
    • pp.779-787
    • /
    • 2021
  • This study analyzes structural landscape changes over a time-series for a small and medium-sized city, Gangneung-Si, based on area and distribution patterns, and according to the type of land cover. Among the types of land cover, the area ratio of urbanized areas increased by 2.02% in the late 2010s as compared to the late 1980s, while there was a decrease of 2.69% in farmland and 0.69% in grassland areas. On analyzing the changes in land cover use by applying the Fragstats program, it was confirmed that landscape changes in urban and management areas were relatively severe according to the Landscape Shape Index, Largest Patch Index, and Aggregation Index. A pattern of concentrated expansion was also found around certain areas. In particular, from the analysis, it was established that the proportion of urbanized area had considerably increased and that the extent of farmland damage to management areas, including planned management areas, was large. Additionally, the Total Core Area generally indicated a reduction in the core areas of farmland and forest within urban and management areas. A medium-sized city showed significant changes besides large cities in terms of landscape structure. The developmental pressure on management areas, in particular, was quite high.

Relationship between threatened vascular plants and the human population in Japan

  • Hayashi, Naoki;Watanabe, Eriko;Matsuda, Hiroyuki
    • Journal of Ecology and Environment
    • /
    • v.35 no.4
    • /
    • pp.331-341
    • /
    • 2012
  • Using data sets for Japan as a whole, as arranged with approximately $10{\times}10$ km squares (a secondary grid), we investigated the relationship between population density and the habitats of threatened vascular plants listed in the Japanese Red Data Book; depopulated areas in the present and future, areas where under-use may be serious, and those with a predominance of elderly people; and the present state of the habitats in terms of a characteristic land use pattern. Regarding the habitats of threatened vascular plants, the progress of deterioration [$(N_{CR}+N_{EN})/(N_{CR}+N_{EN}+N_{VU})$] in depopulated areas has been confirmed, where $N_{CR}$, $N_{EN}$, and $N_{VU}$ are the numbers of species classified as critically endangered, endangered, and vulnerable, respectively. Moreover, in grid squares used by a human such as farmland, the progress of the deterioration simply increases when population density becomes low. However, for many vascular plants, they are particularly endangered in populous areas. Local populations will decrease throughout Japan with the rate of depopulation in and around large cities being relatively slow. We also propose some issues that need further study. The deterioration by human activity may be reduced. On the other hand, some vascular plants may be adversely influenced by depopulation. Additionally, we should keep a close watch on grasslands and water areas in large cities to preserve vascular plants.

Study on Transport Policy Assessment Using the Integrated Land Use Transport Model (통합 토지이용 교통모형을 이용한 교통정책평가에 관한 연구 I: 기존사례연구를 중심으로)

  • Lee, Seung-Jae;Sohn, Jhi-Eon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.111-120
    • /
    • 2010
  • The policy which encourages people to use cars on the road has been based on the growth of economy in Korea. It has also caused the concentration and overcrowding in Seoul. That's because the increasing number of people possessing cars interconnects with the urban development. The transportation is a derived demand; so many scholars have recognized the importance of understanding the relationship between urban land use and transport. Considering such importance, this study theoretically compared the developed urban land use-transportation models each other and outlined the particular models briefly. Models were categorized by 2 types; optimizing model and predictive mode. Predictive model is also defined by static model, entropy based model, spatial-economic model, and activity model. After studying models, we investigated other major cities in America. This process is the pre-step for transport policy assessment. Through careful literature review, we can finally develop the integrated land-use transportation model in Seoul metropolitan area. In addition, we will be able to deal the changes of traffic demand pattern under U-Society. Consequently, the results of this study can be applied to ITS projects in the future.

The Quality of Water and Distribution of Vegetation According to Land Use Pattern (토지이용패턴에 따른 하천수질과 식생분포)

  • Oh, Young-Ju;Kang, Byoung-Wha;Kim, Byoung-Woo;Kim, Sung-Pil;Han, Min-Su;Kim, Jin-Ho;Na, Young-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • The land use pattern, water quality and vegetation were investigated in the six tributaries, including Hanggeumcheon and Satancheon of the Namhan hydrosphere, Iksancheon, Jeonjucheon and Gosancheon of the Mankyung hydrosphere as well as Jongeupcheon of the Dongjin hydrosphere. Forest and farmland area were extensive in Hanggeumcheon, Satancheon and Gosancheon. Farmland and livestock area were wide in Iksancheon. Jeonjucheon were occupied with broad urban. Industrial and urban area were extensive in Jongeupcheon. The loading amounts of biochemical oxygen demand (BOD), total nitrogen (T-N), total phosphorus (T-P) of Iksancheon and chemical oxygen demand (COD) of Jeonjucheon were determined to be very high, respectively. The quality of water in Hanggeumcheon, Satancheon and Gosancheon were determined to be good quality. The species diversity was lower in the down stream than in the upper stream except for the Gosancheon. Life form of plane were mostly perennial plane in the upper stream and annual plants in the down stream of rivers. It was estimated that there is high level of disturbance in the down stream of rivers. The quality of water was significantly correlated with farmland and forest area. In conclusion, human impact, such as farmland and housing lot exerted an influence on the disturbance of down stream and the water quality of rivers.

Analysis of PM2.5 Pattern Considering Land Use Types and Meteorological Factors - Focused on Changwon National Industrial Complex - (토지이용 유형과 기상 요인을 고려한 PM2.5 발생 패턴 분석 - 창원국가산업단지를 중심으로 -)

  • SONG, Bong-Geun;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.2
    • /
    • pp.1-17
    • /
    • 2022
  • This study analyzed the PM2.5 pattern by using data measured for one year from June 2020 to May 2021 by 21 low-cost sensors installed near the Changwon National Industrial Complex in Changwon, Gyeongsangnam-do. For the PM2.5 pattern, the land use types around the measuring points and meteorological factors such as air temperature and wind speed were considered. The PM2.5 concentration was high from November to March in winter, and from 1 to 9 in the morning and early in the morning by time zone. The concentration of PM2.5 was higher as it got closer to the industrial area, but the concentration was lower in the residential area and public facility area. In terms of meteorological factors, the higher the air temperature and wind speed, the lower the concentration of PM2.5. As a result of this study, it was possible to identify the PM2.5 patter near Changwon National Industrial Complex. This result will be useful data that can be used in urban and environmental planning to improve air quality including PM2.5 in urban area in the future.

Correlation Analysis of Land Used Pattern and Air Pollution Using GIS (GIS를 이용한 토지이용상태와 대기오염의 상관성 분석)

  • Choi Byoung Gil;Kim Ki Bum
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.293-301
    • /
    • 2004
  • This study analyzes the interrelationship with air pollution quality and land used patterns, and analyzes the history and optimal allocation of TMS using GIS. Seasonal air pollution map are maded of TMS data in study area, and land used patterns based on Land Cover Classification Map are reclassified as residential area, commercial area, industrial area, traffic concentrated area, and non-Polluted area. Pollution sources can be identified through analyzing the correlation of air pollution and land used patterns by GIS spatial overlaying technique. Hence, the result shows that it coincides with the characteristics of conventional air pollution. Air pollution quality measured by TMS shows similar to that of its near stations or the same land used patterns, through the history and allocation analysis of TMS. Therefore, it is need to consider these characteristics in setting TMS positions in the future.

Effect of Altitude and Tuber Weight on the Growth and Yield of Pinellia ternata (Thunb.) Breit (해발고도별 반하 종구 무게가 생육 및 수량에 미치는 영향)

  • Oh, Han Jun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.2
    • /
    • pp.130-135
    • /
    • 2013
  • The plant growth and yield of Pinellia ternata (Thunb.) Breit. were studied by altitude and tuber weight. The emergence rates in low land area were not different by tuber weights, but it showed earlier emergence date in heavier weight of seed-tuber and low land area. The higher aerial growth such as plant height and number of leaves per plant was the heavier tuber weight in a planting year, but the growth was not different by the weight of tuber at second year after planting. The distribution pattern of tuber size per $m^2$ was not influenced by different seed-tuber weight. The number of harvested tuber was highest at more than 1 g of tuber weight, and followed 1~2 g and less than 2 g. The distribution pattern of fresh tuber yield was not influenced by different altitude and seed-tuber weight. The marketable tuber, 2 g or more, tends to be produced with more than 0.6 g seed-tuber. As the results above-mentioned, it was thought that the high yield was supposed to use seed-tuber over 0.6 g in the fertile soil.