• Title/Summary/Keyword: land surface cover

Search Result 315, Processing Time 0.028 seconds

Sensitivity Analysis for CAS500-4 Atmospheric Correction Using Simulated Images and Suggestion of the Use of Geostationary Satellite-based Atmospheric Parameters (모의영상을 이용한 농림위성 대기보정의 주요 파라미터 민감도 분석 및 타위성 산출물 활용 가능성 제시)

  • Kang, Yoojin;Cho, Dongjin;Han, Daehyeon;Im, Jungho;Lim, Joongbin;Oh, Kum-hui;Kwon, Eonhye
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1029-1042
    • /
    • 2021
  • As part of the next-generation Compact Advanced Satellite 500 (CAS500) project, CAS500-4 is scheduled to be launched in 2025 focusing on the remote sensing of agriculture and forestry. To obtain quantitative information on vegetation from satellite images, it is necessary to acquire surface reflectance through atmospheric correction. Thus, it is essential to develop an atmospheric correction method suitable for CAS500-4. Since the absorption and scattering characteristics in the atmosphere vary depending on the wavelength, it is needed to analyze the sensitivity of atmospheric correction parameters such as aerosol optical depth (AOD) and water vapor (WV) considering the wavelengths of CAS500-4. In addition, as CAS500-4 has only five channels (blue, green, red, red edge, and near-infrared), making it difficult to directly calculate key parameters for atmospheric correction, external parameter data should be used. Therefore, thisstudy performed a sensitivity analysis of the key parameters (AOD, WV, and O3) using the simulated images based on Sentinel-2 satellite data, which has similar wavelength specifications to CAS500-4, and examined the possibility of using the products of GEO-KOMPSAT-2A (GK2A) as atmospheric parameters. The sensitivity analysisshowed that AOD wasthe most important parameter with greater sensitivity in visible channels than in the near-infrared region. In particular, since AOD change of 20% causes about a 100% error rate in the blue channel surface reflectance in forests, a highly reliable AOD is needed to obtain accurate surface reflectance. The atmospherically corrected surface reflectance based on the GK2A AOD and WV was compared with the Sentinel-2 L2A reflectance data through the separability index of the known land cover pixels. The result showed that two corrected surface reflectance had similar Seperability index (SI) values, the atmospheric corrected surface reflectance based on the GK2A AOD showed higher SI than the Sentinel-2 L2A reflectance data in short-wavelength channels. Thus, it is judged that the parameters provided by GK2A can be fully utilized for atmospheric correction of the CAS500-4. The research findings will provide a basis for atmospheric correction of the CAS500-4 in the future.

Review of Remote Sensing Studies on Groundwater Resources (원격탐사의 지하수 수자원 적용 사례 고찰)

  • Lee, Jeongho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.855-866
    • /
    • 2017
  • Several research cases using remote sensing methods to analyze changes of storage and dynamics of groundwater aquifer were reviewed in this paper. The status of groundwater storage, in an area with regional scale, could be qualitatively inferred from geological feature, surface water altimetry and topography, distribution of vegetation, and difference between precipitation and evapotranspiration. These qualitative indicators could be measured by geological lineament analysis, airborne magnetic survey, DEM analysis, LAI and NDVI calculation, and surface energy balance modeling. It is certain that GRACE and InSAR have received remarkable attentions as direct utilization from satellite data for quantification of groundwater storage and dynamics. GRACE, composed of twin satellites having acceleration sensors, could detect global or regional microgravity changes and transform them into mass changes of water on surface and inside of the Earth. Numerous studies in terms of groundwater storage using GRACE sensor data were performed with several merits such that (1) there is no requirement of sensor data, (2) auxiliary data for quantification of groundwater can be entirely obtained from another satellite sensors, and (3) algorithms for processing measured data have continuously progressed from designated data management center. The limitations of GRACE for groundwater storage measurement could be defined as follows: (1) In an area with small scale, mass change quantification of groundwater might be inaccurate due to detection limit of the acceleration sensor, and (2) the results would be overestimated in case of combination between sensor and field survey data. InSAR can quantify the dynamic characteristics of aquifer by measuring vertical micro displacement, using linear proportional relation between groundwater head and vertical surface movement. However, InSAR data might now constrain their application to arid or semi-arid area whose land cover appear to be simple, and are hard to apply to the area with the anticipation of loss of coherence with surface. Development of GRACE and InSAR sensor data preprocessing algorithms optimized to topography, geology, and natural conditions of Korea should be prioritized to regionally quantify the mass change and dynamics of the groundwater resources of Korea.

The Tendency Analysis of Albedo by Land Cover Over Northeast Asia Using MODIS 16-Day Composited Albedo data (MODIS 16-Day Albedo 자료를 이용한 동북아시아 지역의 토지피복 별 알베도 변화 분석)

  • Park, Eun-Bin;Han, Kyung-Soo;Lee, Chang-Suk;Pi, Kyung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.501-508
    • /
    • 2012
  • Albedo is known as a factor that directly impacts on the surface energy balance one of the elements of earth radiation balance. The change of albedo includes the change of soil moisture, vegetation, solar zenith angle, snow, and so on. In addition, it operates as a crucial path to understanding feedback mechanisms between radiation balance and its influence on climate and vegetation dynamics and therefore, observing the variation of albedo is a one of the essential procedures for anticipating climate change. In this study, we used MODIS 16-Day composited Albedo data from 2001 to 2011 years with the purpose of observing the change of albedo over Northeast Asia. According to the tendency of albedo for 11 years, albedo in the area of an active vegetation has increased in near-infrared (NIR) domain and decreased in visible (VIS) domain. On the basis of local changes in vegetation in 2002, the both area of the Gobi Desert and the Manchuria was enormously changed and chosen the research area and furthermore, the vegetation of both regions had deteriorated due to the change of the minimum value since 2010.

Changes in Bird Community in Artificial Wetlands of Sihwa Lake, South Korea (시화호 인공습지 조성 후 조류군집의 변화)

  • Hur Wee-Haeng;Lee Woo-Shin;Rhim Shin-Jae
    • Korean Journal of Environment and Ecology
    • /
    • v.19 no.3
    • /
    • pp.279-286
    • /
    • 2005
  • This study was conducted to analyze the changing pattern of the bird community after the construction of artificial wetland at Sihwah lake from may 2000 to January 2002. Total seventy seven bird species were recorded at Sihwa artificial wetland area during the survey. Number of the bird species and individuals were increased in second year than first survey year. Especially shorebirds and raptors were more increased than other groups. Long-term and continuous monitoring of bird community would be needed to clarify the reasons of increasing pattern of bird species and individuals in artificial wetlands of Sihwa lake. Until now, this area has been considered as suitable habitat for dabbling ducks than shore birds and has simple habitat environment consisting of open water surface and reed beds. Therefore, we suggest the follows for creation of diverse habitat types: 1) seasonal water-level manipulation 2) management of diverse aquatic plants and 3) creation of diverse land cover; sandy fields, gravelly fields, grasslands, etc.

Spatial Interpolation of Hourly Air Temperature over Sloping Surfaces Based on a Solar Irradiance Correction (일사 수광량 보정에 의한 산악지대 매시기온의 공간내삽)

  • 정유란;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 2002
  • Spatial interpolation has become a common procedure in converting temperature forecasts and observations at irregular points for use in regional scale ecosystem modeling and the model based decision support systems for resource management. Neglection of terrain effects in most spatial interpolations for short term temperatures may cause erroneous results in mountainous regions, where the observation network hardly covers full features of the complicated terrain. A spatial interpolation model for daytime hourly temperature was formulated based on error analysis of unsampled site with respect to the site topography. The model has a solar irradiance correction scheme in addition to the common backbone of the lapse rate - corrected inverse distance weighting. The solar irradiance scheme calculates the direct, diffuse and reflected components of shortwave radiation over any surfaces based on the sun-slope geometry and compares the sum with that over a reference surface. The deviation from the reference radiation is used to calculate the temperature correction term by an empirical conversion formula between the solar energy and the air temperature on any sloped surfaces at an hourly time scale, which can be prepared seasonally for each land cover type. When this model was applied to a 14 km by 22 km mountainous region at a 10 m horizontal resolution, the estimated hourly temperature surfaces showed a better agreement with the observed distribution than those by a conventional method.

An Interpretation of Changes in Groundwater Level and Electrical Conductivity in Monitoring Wells in Jeiu Island (제주도의 지하수 관측망 자료를 이용한 지하수위 및 전기전도도 변화 해석)

  • Lee, Jin-Yong;Lee, Gyu-Sang;Song, Sung-Ho
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.925-935
    • /
    • 2007
  • Water sources in volcanic Jeju Island are almost entirely dependent on groundwater because there are actually no perennial streams or rivers due to the permeable nature of surface soils derived from basaltic or trachytic rocks. Uncontrolled development of groundwater resulted in substantial water-level decline, groundwater pollution, and seawater intrusion in several places of the island. To maintain its sustainable groundwater, the provincial government has declared some parts of the island as the Special Groundwater Conservation/Management Area since 1994. Hence, all the activities for the groundwater development in the area should obtain official permit from relevant authorities. Furthermore, to acquire information on groundwater status, a network of groundwater monitoring was established to cover most of the low land and coastal areas with the installation of automatic monitoring systems since 2001. The analysis of the groundwater monitoring data indicated that the water levels had decreased at coastal area, especially in northern part of the island. Moreover, very high electrical conductivity (EC) levels and their increasing trends were observed in the eastern part, which was ascribable to seawater intrusion by intensive pumping in recent years. Water level decline and EC rise in the coastal area are expected to continue despite the present strict control on additional groundwater development.

Proposal of Prediction Technique for Future Vegetation Information by Climate Change using Satellite Image (위성영상을 이용한 기후변화에 따른 미래 식생정보 예측 기법 제안)

  • Ha, Rim;Shin, Hyung-Jin;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.58-69
    • /
    • 2007
  • The vegetation area that occupies 76% in land surface of the earth can give a considerable impact on water resources, environment and ecological system by future climate change. The purpose of this study is to predict future vegetation cover information from NDVI (Normalized Difference Vegetation Index) extracted from satellite images. Current vegetation information was prepared from monthly NDVI (March to November) extracted from NOAA AVHRR (1994 - 2004) and Terra MODIS (2000 - 2004) satellite images. The NDVI values of MODIS for 5 years were 20% higher than those of NOAA. The interrelation between NDVIs and monthly averaged climate factors (daily mean, maximum and minimum temperature, rainfall, sunshine hour, wind velocity, and relative humidity) for 5 river basins of South Korea showed that the monthly NDVIs had high relationship with monthly averaged temperature. By linear regression, the future NDVIs were estimated using the future mean temperature of CCCma CGCM2 A2 and B2 climate change scenario. The future vegetation information by NOAA NDVI showed little difference in peak value of NDVI, but the peak time was shifted from July to August and maintained high NDVIs to October while the present NDVI decrease from September. The future MODIS NDVIs showed about 5% increase comparing with the present NDVIs from July to August.

  • PDF

Problems on the Door to Door Application of International Air Law Conventions (국제항공운송협약의 Door to Door 운송에의 적용에 관한 문제점)

  • CHOI, Myung-Kook
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.78
    • /
    • pp.1-29
    • /
    • 2018
  • This article demonstrates that both the Warsaw Convention Systemand the Montreal Convention are not designed for multimodal transport, let alone for "Door to Door" transport. The polemic directed against the "Door to Door" application of the Warsaw Convention systemand the Montreal Convention is predominantly driven by the text and the drafting philosophy of the said Contentions that since 1929 support unimodalism-with the rule that "the period of the carriage by air does not expend to any carriage by land, by sea or by inland waterway performed outside an airport" playing a profound role in restricting their multimodal aspirations. The drafters of the Montreal Convention were more adventurous than their predecessors with respect to the boundaries of the Montreal Convention. They amended Art. 18(3) by removing the phrase "whether in an aerodrome or on board an aircraft, or, in the case of landing outside an aerodrome, in any place whatsoever", however, they retained the first sentence of Art. 18(4). The deletion of the airport limitation fromArt. 18(3) creates its own paradox. The carrier can be held liable under the Montreal Convention for the loss or damage to cargo while it is in its charge in a warehouse outside an airport. Yet, damage or loss of the same cargo that occurs during its surface transportation to the aforementioned warehouse and vice versa is not covered by the Montreal Convention fromthe moment the cargo crosses the airport's perimeter. Surely, this result could not have been the intention of its drafters: it certainly does not make any commercial sense. I think that a better solution to the paradox is to apply the "functional interpretation" of the term"airport". This would retain the integrity of the text of the Montreal Convention, make sense of the change in the wording of Art. 18(3), and nevertheless retain the Convention's unimodal philosophy. English courts so far remain loyal to the judgment of the Court of Appeal in Quantum, which constitutes bad news for the supporters of the multimodal scope of the Montreal Convention. According the US cases, any losses occurring during Door to Door transportation under an air waybill which involves a dominant air segment are subject to the international air law conventions. Any domestic rules that might be applicable to the road segment are blatantly overlooked. Undoubtedly, the approach of the US makes commercial. But this policy decision by arguing that the intention of the drafters of the Warsaw Convention was to cover Door to Door transportation is mistaken. Any expansion to multimodal transport would require an amendment to the Montreal Convention, Arts 18 and 38, one that is not in the plans for the foreseeable future. Yet there is no doubt that air carriers and freight forwarders will continue to push hard for such expansion, especially in the USA, where courts are more accommodating.

  • PDF

Estimating Groundwater Level Variation due to the Construction of a Large Borrow Site using MODFLOW Numerical Modeling (대규모 토취장 개발 예정 지역의 수치모델을 이용한 지하수위 변동 예측)

  • Ryu, Sanghun;Park, Joonhyeong;Kim, Gyoobum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.15-23
    • /
    • 2012
  • A numerical model and field monitoring data are used to estimate a change in groundwater level at a borrow site, which will be constructed at the mountainous area with a large ground excavation in the study area, Hwaseong city. Lithologic data and hydraulic coefficients are collected at 9 boreholes and also groundwater levels are measured at these boreholes and existing wells in the study area. Additionally, groundwater recharge rate for the type of land cover is estimated using water budget analysis; 133.34mm/year for a mountainous area, 157.68mm/year for a farming area, 71.08mm/year for an urbanized area, and 26.06mm/year for a bedrock exposure area. The change in groundwater level in and around a borrow site is simulated with Modflow using these data. The result of a transient model indicates that a removal of high ground (over 40El.m) by an excavation will produce a decrease in groundwater levels, up to 1 m, around a borrow site in 10 years. It also explains that this ground excavation will bring about the decreases of 9.4% and 7.0% for groundwater recharge and surface runoff, respectively, which are the factors causing groundwater level's change. This study shows that it is required to construct the groundwater monitoring wells to observe the change of groundwater near a borrow site.

Enhancing the Reliability of MODIS Gross Primary Productivity (GPP) by Improving Input Data (입력자료 개선에 의한 MODIS 총일차생산성의 신뢰도 향상)

  • Kim, Young-Il;Kang, Sin-Kyu;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.132-139
    • /
    • 2007
  • The Moderate Resolution Imaging Spectroradiometer (MODIS) regularly provides the eight-day gross primary productivity (GPP) at 1 km resolution. In this study, we evaluated the uncertainties of MODIS GPP caused by errors associated with the Data Assimilation Office (DAO) meteorology and a biophysical variable (fraction of absorbed photosynthetically active radiation, FPAR). In order to recalculate the improved GPP estimate, we employed ground weather station data and reconstructed cloud-free FPAR. The official MODIS GPP was evaluated as +17% higher than the improved GPP. The error associated with DAO meteorology was identified as the primary and the error from the cloud-contaminated FPAR as the secondary constituent in the integrative uncertainty. Among various biome types, the highest relative error of the official MODIS GPP to the improved GPP was found in the mixed forest biome with RE of 20% and the smallest errors were shown in crop land cover at 11%. Our results indicated that the uncertainty embedded in the official MODIS GPP product was considerable, indicating that the MODIS GPP needs to be reconstructed with the improved input data of daily surface meteorology and cloud-free FPAR in order to accurately monitor vegetation productivity in Korea.