• Title/Summary/Keyword: land classification

Search Result 924, Processing Time 0.03 seconds

A Study of Land-Cover Classification Technique for Merging Image Using Fuzzy C-Mean Algorithm (Fuzzy C-Mean 알고리즘을 이용한 중합 영상의 토지피복분류기법 연구)

  • 신석효;안기원;양경주
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.2
    • /
    • pp.171-178
    • /
    • 2004
  • The advantage of the remote sensing is extraction the information of wide area rapidly. Such advantage is the resource and environment are quick and efficient method to grasps accurately method through the land cover classification of wide area. Accordingly this study was presented more better land cover classification method through an algorithm development. We accomplished FCM(Fuzzy C-Mean) classification technique with MLC (Maximum Likelihood classification) technique to be general land cover classification method in the content of research. And evaluated the accuracy assessment of two classification method. This study is used to the high-resolution(6.6m) Electro-Optical Camera(EOC) panchromatic image of the first Korea Multi-Purpose Satellite 1(KOMPSAT-1) and the multi-spectral Moderate Resolution Imaging Spectroradiometer(MODIS) image data(36 bands).

Land Use Classification of TM Imagery in Hilly Areas: Integration of Image Processing and Expert Knowledge

  • Ding, Feng;Chen, Wenhui;Zheng, Daxian
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1329-1331
    • /
    • 2003
  • Improvement of the classification accuracy is one of the major concerns in the field of remote sensing application research in recent years. Previous research shows that the accuracy of the conventional classification methods based only on the original spectral information were usually unsatisfied and need to be refined by manual edit. This present paper describes a method of combining the image processing, ancillary data (such as digital elevation model) and expert knowledge (especially the knowledge of local professionals) to improve the efficiency and accuracy of the satellite image classification in hilly land. Firstly, the Landsat TM data were geo-referenced. Secondly, the individual bands of the image were intensitynormalized and the normalized difference vegetation index (NDVI) image was also generated. Thirdly, a set of sample pixels (collected from field survey) were utilized to discover their corresponding DN (digital number) ranges in the NDVI image, and to explore the relationships between land use type and its corresponding spectral features . Then, using the knowledge discovered from previous steps as well as knowledge from local professionals, with the support of GIS technology and the ancillary data, a set of conditional statements were applied to perform the TM imagery classification. The results showed that the integration of image processing and spatial analysis functions in GIS improved the overall classification result if compared with the conventional methods.

  • PDF

A Case Study of Land-cover Classification Based on Multi-resolution Data Fusion of MODIS and Landsat Satellite Images (MODIS 및 Landsat 위성영상의 다중 해상도 자료 융합 기반 토지 피복 분류의 사례 연구)

  • Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1035-1046
    • /
    • 2022
  • This study evaluated the applicability of multi-resolution data fusion for land-cover classification. In the applicability evaluation, a spatial time-series geostatistical deconvolution/fusion model (STGDFM) was applied as a multi-resolution data fusion model. The study area was selected as some agricultural lands in Iowa State, United States. As input data for multi-resolution data fusion, Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite images were used considering the landscape of study area. Based on this, synthetic Landsat images were generated at the missing date of Landsat images by applying STGDFM. Then, land-cover classification was performed using both the acquired Landsat images and the STGDFM fusion results as input data. In particular, to evaluate the applicability of multi-resolution data fusion, two classification results using only Landsat images and using both Landsat images and fusion results were compared and evaluated. As a result, in the classification result using only Landsat images, the mixed patterns were prominent in the corn and soybean cultivation areas, which are the main land-cover type in study area. In addition, the mixed patterns between land-cover types of vegetation such as hay and grain areas and grass areas were presented to be large. On the other hand, in the classification result using both Landsat images and fusion results, these mixed patterns between land-cover types of vegetation as well as corn and soybean were greatly alleviated. Due to this, the classification accuracy was improved by about 20%p in the classification result using both Landsat images and fusion results. It was considered that the missing of the Landsat images could be compensated for by reflecting the time-series spectral information of the MODIS images in the fusion results through STGDFM. This study confirmed that multi-resolution data fusion can be effectively applied to land-cover classification.

Ecological land cover classification of the Korean peninsula Ecological land cover classification of the Korean peninsula

  • Kim, Won-Joo;Lee, Seung-Gu;Kim, Sang-Wook;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.679-681
    • /
    • 2003
  • The objectives of this research are as follows. First, to investigate methods for a national-scale land cover map based on multi-temporal classification of MODIS data and multi-spectral classification of Landsat TM data. Second, to investigate methods to p roduce ecological zone maps of Korea based on vegetation, climate, and topographic characteristics. The results of this research can be summarized as follows. First, NDVI and EVI of MODIS can be used to ecological mapping of the country by using monthly phenological characteris tics. Second, it was found that EVI is better than NDVI in terms of atmospheric correction and vegetation mapping of dense forests of the country. Third, several ecological zones of the country can be identified from the VI maps, but exact labeling requires much field works, and sufficient field data and macro-environmental data of the country. Finally, relationship between land cover types and natural environmental factors such as temperature, precipitation, elevation, and slope could be identified.

  • PDF

Development of Land Suitability Classification System for Rational Agricultural Land Use Planning (농지이용계획의 합리적 책정을 위한 농지적성 평가기법의 개발)

  • 황한철;최수명
    • Journal of Korean Society of Rural Planning
    • /
    • v.3 no.2
    • /
    • pp.102-111
    • /
    • 1997
  • For rational agricultural land use planning, it is quite necessary to get hold of land suitability precisely and to make decision on land use patterns accordingly. In the methodological viewpoint, objective and scientific evaluation techniques for land suitability classification should be supported for the systematic land use planning. As one of technical development approaches to rational land use planning, this study tried to frame a land suitability evaluation system for agricultural purposes. Evaluation unit is defined as a tract of land bounded by road, other land units and topographical features. And quantification theory was applied in the determination works of evaluation criteria. The administrative area of Namsa-myon(district), Yongin-si(city), Kyunggi-do(province) was selected for the case study. In order to check the feasibility of the evaluation system developed in the study, field check team, consisting of 2 government officers and 2 representative farmers, carried out evaluation works by observation on 148 sample land units, 10% of total 1,480 ones. Between estimated and observed results, there showed very good relationship of its multiple correlation coefficient, R=0.9467.

  • PDF

A Study on the Improvement of Sub-divided Land Cover Map Classification System - Based on the Land Cover Map by Ministry of Environment - (세분류 토지피복지도 분류체계 개선방안 연구 - 환경부 토지피복지도를 중심으로 -)

  • Oh, Kwan-Young;Lee, Moung-Jin;No, Woo-Young
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.105-118
    • /
    • 2016
  • The purpose of this study is to improve the classification system of sub-divided land cover map among the land cover maps provided by the Ministry of Environment. To accomplish the purpose, first, the overseas country land cover map classification items were examined in priority. Second, the area ratio of each item established by applying the previous sub-divided classification system was analyzed. Third, the survey on the improvement of classification system targeting the users (experts and general public) who actually used the sub-divided land cover map was carried out. Fourth, a new classification system which improved the previous system by reclassifying 41 classification items into 33 items was finally established. Fifth, the established land cover classification items were applied on study area, and the land cover classification result according to the improvement method was compared with the previous classification system. Ilsan area in Goyang city where there are diverse geographic features with various land surface characteristics such as the urbanization area and agricultural land were distributed evenly were selected as the study area. The basic images used in this study were 0.25 m aerial ortho-photographs captured by the National Geographic Information Institute (NGII), and digital topographic map, detailed stock map plan, land registration map and administrative area map were used as the relevant reference data. As a result of applying the improved classification system into the study area, the area of culture-sports, leisure facilities was $1.84km^2$ which was approximately more than twice larger in comparison to the previous classification system. Other areas such as transportation and communication system and educational administration facilities were not classified. The result of this study has meaningful significance that it reflects the efficiency for the establishment and renewal of sub-divided land cover map in the future and actual users' needs.

Application of KITSAT-3 Images: Automated Generation of Fuzzy Rules and Membership Functions for Land-cover Classification of KITSAT-3 Images

  • Park, Won-Kyu;Choi, Soon-Dal
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.48-53
    • /
    • 1999
  • The paper presents an automated method for generating fuzzy rules and fuzzy membership functions for pattern classification from training sets of examples and an application to the land-cover classification. Initially, fuzzy subspaces are created from the partitions formed by the minimum and maximum of individual feature values of each class. The initial membership functions are determined according to the generated fuzzy partitions. The fuzzy subspaces are further iteratively partitioned if the user-specified classification performance has not been archived on the training set. Our classifier was trained and tested on patterns consisting of the DN of each band, (XS1, XS2, XS3), extracted from KITSAT-3 multispectral scene. The result represents that our classification method has higher generalization power.

  • PDF

Mapping of land cover using QuickBird satellite data based on object oriented and ISODATA classification methods - A comparison for micro level planning (Quickbird 영상을 이용한 객체지향 및 ISODATA 분류기법기반 토지피복분류-세부레벨계획을 위한 비교분석)

  • Jayakumar, S.;Lee, Jung-Bin;Heo, Joon
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.113-119
    • /
    • 2007
  • This article deals mainly with two objectives viz, 1) the potentiality of very high-resolution(VHR) multi-spectral and pan chromatic QuickBird satellite data in resources mapping over moderate resolution satellite data (IRS LISS III) and 2) the advantages of using object oriented classification method of eCognition software in land use and land cover analysis over the ISODATA classification method. These VHR data offers widely acceptable metric characteristics for cartographic updating and increase our ability to map land use in geometric detail and improve accuracy of local scale investigations. This study has been carried out in the Sukkalampatti mini-watershed, which is situated in the Eastern Ghats of Tamil Nadu, India. The eCognition object oriented classification method succeeded in most cases to achieve a high percentage of right land cover class assignment and it showed better results than the ISODATA pixel based one, as far as the discrimination of land cover classes and boundary depiction is concerned.

  • PDF

The study on Decision Tree method to improve land cover classification accuracy of Hyperspectral Image (초분광영상의 토지피복분류 정확도 향상을 위한 Decision Tree 기법 연구)

  • SEO, Jin-Jae;CHO, Gi-Sung;SONG, Jang-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.205-213
    • /
    • 2018
  • Hyperspectral image is more increasing spectral resolution that Multi-spectral image. Because of that, each pixel of the hyperspectral image includes much more information and it is considered the most appropriate technic for land cover classification. but recent research of hyperspectral image is stayed land cover classification of general level. therefore we classified land cover of detail level using ED, SAM, SSS method and made Decision Tree from result of that. As a result, the overall accuracy of general level was improved by 1.68% and the overall accuracy of detail level was improved by 5.56%.

Land Cover Classification Using UAV Imagery and Object-Based Image Analysis - Focusing on the Maseo-myeon, Seocheon-gun, Chungcheongnam-do - (UAV와 객체기반 영상분석 기법을 활용한 토지피복 분류 - 충청남도 서천군 마서면 일원을 대상으로 -)

  • MOON, Ho-Gyeong;LEE, Seon-Mi;CHA, Jae-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • A land cover map provides basic information to help understand the current state of a region, but its utilization in the ecological research field has deteriorated due to limited temporal and spatial resolutions. The purpose of this study was to investigate the possibility of using a land cover map with data based on high resolution images acquired by UAV. Using the UAV, 10.5 cm orthoimages were obtained from the $2.5km^2$ study area, and land cover maps were obtained from object-based and pixel-based classification for comparison and analysis. From accuracy verification, classification accuracy was shown to be high, with a Kappa of 0.77 for the pixel-based classification and a Kappa of 0.82 for the object-based classification. The overall area ratios were similar, and good classification results were found in grasslands and wetlands. The optimal image segmentation weights for object-based classification were Scale=150, Shape=0.5, Compactness=0.5, and Color=1. Scale was the most influential factor in the weight selection process. Compared with the pixel-based classification, the object-based classification provides results that are easy to read because there is a clear boundary between objects. Compared with the land cover map from the Ministry of Environment (subdivision), it was effective for natural areas (forests, grasslands, wetlands, etc.) but not developed areas (roads, buildings, etc.). The application of an object-based classification method for land cover using UAV images can contribute to the field of ecological research with its advantages of rapidly updated data, good accuracy, and economical efficiency.