• Title/Summary/Keyword: land classification

Search Result 924, Processing Time 0.032 seconds

A Study on the Land-Use Changes on the Balan Water sheds Using the Multi-temperature Landsat TM Images (다시기 Landsat TM 영상을 이용한 소유역의 토지이용변화분석)

  • 강문성;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.473-478
    • /
    • 1999
  • The purpose of the study were to detect and evaluate the land use and changes on the Balan Watersheds, located southwest of Suwon, using the Thematic Mapper(TM) data. Three sests of TM taken in 1985 , 1993 and 1996 were used and the changes in the land use analyzed and compared. The suupervised and unsuperivised classification methods were adoppted to classify five land-cover categories ; Paddy , upland , forest , residential , and water. Future ladn use patterns were simulated using a Markow chain method, and the change ratios presented.

  • PDF

Land-Cover Classification of Barton Peninsular around King Sejong station located in the Antarctic using KOMPSAT-2 Satellite Imagery (KOMPSAT-2 위성 영상을 이용한 남극 세종기지 주변 바톤반도의 토지피복분류)

  • Kim, Sang-Il;Kim, Hyun-Cheol;Shin, Jung-Il;Hong, Soon-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.537-544
    • /
    • 2013
  • Baton Peninsula, where Sejong station is located, mainly covered with snow and vegetation. Because this area is sensitive to climate change, monitoring of surface variation is important to understand climate change on the polar region. Due to the inaccessibility, the remote sensing is useful to continuously monitor the area. The objectives of this research are 1) map classification of land-cover types in the Barton Peninsular around King Sejong station and 2) grasp distribution of vegetation species in classified area. A KOMPSAT-2 multispectral satellite image was used to classify land-cover types and vegetation species. We performed classification with hierarchical procedure using KOMPSAT-2 satellite image and ground reference data, and the result is evaluated for accuracy as well. As the results, vegetation and non-vegetation were clearly classified although species shown lower accuracies within vegetation class.

A Study on Extracting the Landuse Change Information of Seoul Using LANDSAT(MSS, TM) Data (1972~1985) (LANDAST(MSS, TM) Data를 이용(利用)한 서울시(市)의 토지이용(土地利用) 경년변화(經年變化)의 추출(抽出)에 관한 연구(硏究) (1972~1985년))

  • Ahn, Chul Ho;Ahn, Ki Won;Kim, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.113-124
    • /
    • 1989
  • In this study, we tried to extract the land-use change information of Seoul city using the multiple date images of the same geographic area. Multiple date image set is MSS('72, '79, '81, '93) and TM('85), and we carried out geometric correction, digitizing(due to the administrative boundary) in pre-processing process. In addition, we performed land-use classification with MLC(Maximum Likelihood Classifier) after improving the predictive accuracy of classification by filtering technique. At the stage of classification, ground truth data, topographic maps, aerial photographs were used to select the training field and statistical data of that time were compared with the classification result to prove the accuracy. As a result, urban area in Seoul has been increased('72 : 25.8 %${\rightarrow}$'81 : 43.0 %${\rightarrow}$'85 : 51.9 %) and Forest area decreased ('72 : 39.0 %${\rightarrow}$'85 : 28.4 %) as we estimated. Finally, it is concluded that the utilzation of satellite imagery is very effective, economical and helpful in the urban land-use/land-cover monitoring.

  • PDF

Estimation of Nonpoint Source Pollutant Loads of Juam-Dam Basin Based on the Classification of Satellite Imagery (위성영상 분류 기반 주암댐 유역 비점오염부하량 평가)

  • Lee, Geun-Sang;Kim, Tae-Keun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • The agricultural area was classified into dry and paddy fields in this study using the near-infrared band of Landsat TM to extract land cover classes that need to the application of Expected Mean Concentration (EMC) in nonpoint source works. The accuracy of image classification of the land cover map from Landsat TM image showed 83.61% and 78.41% respectively by comparing with the large and middle scale land cover map of Ministry of Environment. As the result of Soil Conservation Service (SCS) Curve Number (CN) using the land cover map from image classification, Dongbok dam and Dongbok stream basin were analyzed high. Also Geymbaek water-gage and Bosunggang upstream basin showed high in the analysis of EMC of BOD, TN, TP by basin. And also Geymbaek water-gage and Bosunggang upstream basin showed high in the analysis of non-point source through coupling with direct runoff. Therefore these basins were selected with the main area for the management of nonpoint source.

Assessing Techniques for Advancing Land Cover Classification Accuracy through CNN and Transformer Model Integration (CNN 모델과 Transformer 조합을 통한 토지피복 분류 정확도 개선방안 검토)

  • Woo-Dam SIM;Jung-Soo LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.1
    • /
    • pp.115-127
    • /
    • 2024
  • This research aimed to construct models with various structures based on the Transformer module and to perform land cover classification, thereby examining the applicability of the Transformer module. For the classification of land cover, the Unet model, which has a CNN structure, was selected as the base model, and a total of four deep learning models were constructed by combining both the encoder and decoder parts with the Transformer module. During the training process of the deep learning models, the training was repeated 10 times under the same conditions to evaluate the generalization performance. The evaluation of the classification accuracy of the deep learning models showed that the Model D, which utilized the Transformer module in both the encoder and decoder structures, achieved the highest overall accuracy with an average of approximately 89.4% and a Kappa coefficient average of about 73.2%. In terms of training time, models based on CNN were the most efficient. however, the use of Transformer-based models resulted in an average improvement of 0.5% in classification accuracy based on the Kappa coefficient. It is considered necessary to refine the model by considering various variables such as adjusting hyperparameters and image patch sizes during the integration process with CNN models. A common issue identified in all models during the land cover classification process was the difficulty in detecting small-scale objects. To improve this misclassification phenomenon, it is deemed necessary to explore the use of high-resolution input data and integrate multidimensional data that includes terrain and texture information.

PHENOLOGICAL ANALYSIS OF NDVI TIME-SERIES DATA ACCORDING TO VEGETATION TYPES USING THE HANTS ALGORITHM

  • Huh, Yong;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.329-332
    • /
    • 2007
  • Annual vegetation growth patterns are determined by the intrinsic phenological characteristics of each land cover types. So, if typical growth patterns of each land cover types are well-estimated, and a NDVI time-series data of a certain area is compared to those estimated patterns, we can implement more advanced analyses such as a land surface-type classification or a land surface type change detection. In this study, we utilized Terra MODIS NDVI 250m data and compressed full annual NDVI time series data into several indices using the Harmonic Analysis of Time Series(HANTS) algorithm which extracts the most significant frequencies expected to be presented in the original NDVI time-series data. Then, we found these frequencies patterns, described by amplitude and phase data, were significantly different from each other according to vegetation types and these could be used for land cover classification. However, in spite of the capabilities of the HANTS algorithm for detecting and interpolating cloud-contaminated NDVI values, some distorted NDVI pixels of June, July and August, as well as the long rainy season in Korea, are not properly corrected. In particular, in the case of two or three successive NDVI time-series data, which are severely affected by clouds, the HANTS algorithm outputted wrong results.

  • PDF

Detecting Land Use Changes in an Urban Area using LANDSAT TM and JERS-1 OPS Imagery (LANDSAT TM과 JERS-1 OPS 영상을 이용한 도시지역의 토지이용 변화 검출)

  • Lee, Jin-Duk;Yeon, Sang-Ho;Ryu, Jae-Yup;Kim, Sung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.1
    • /
    • pp.73-83
    • /
    • 1999
  • The land use/cover information, which is periodically obtained from satellite imagery, can be effectively applied to change detection in rapidly changing urban areas. Also it can be used not only as base maps for spatial database in urban information system but as decision-making data for desired urban planning and development direction. In this study, we carried out both unsupervised and supervised classification on land use from Landsat TM and JERS-1 OPS data, which were collected respectively in 1991 and 1997, covering Kumi City and then detected land use changes.

  • PDF

Study on the Classification of Gyeonggi-Do's Conservation Areas by Improvement of National Land Environmental Assessment (국토환경성평가 개선을 통한 경기도지역의 보전지역 구분에 관한 연구)

  • Lee, Dong-Kun;Sung, Hyun-Chan;Jeon, Seong-Woo;Lee, Sang-Dae;Kim, Kwi-Gon;Kim, Jae-Uk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.4
    • /
    • pp.43-51
    • /
    • 2005
  • Due to rapid and reckless economic development, natural resources of the national land have been damaged and polluted. Accordingly, the necessity for environment-friendly development has been on the rise and many have made efforts to assess the environmental value of the national land. This study divides the conservation areas by means of using relative elevation, slope, and development of housing land based on environmental evaluation of the national land. The relative elevation is obtained by the difference of altitude at the edge of the forest patch extracted from the land cover classification map based on the ridgeline, and the slope is obtained by environment-oriented land suitability analysis. The development of housing land is classified in accordance with the progress of each project. Twenty-six evaluation criteria are divided into five different grades using the minimal indicator approach and then sub-divided into ten grades by means of using the following two scenarios. The first one uses the weight of input materials while the second one relies on the size of patches that are emphasized in landscape ecology. Consequently, such a study demonstrated the following results. The method relying on the weight of input materials revealed the limitation of emphasizing input materials excessively, whereas the method of considering the size of patches resulted in the division of conservation areas that embody regional characteristics. This study is meaningful in that it classifies the conservation areas by reflecting the regional characteristics and the ecological values of animals and plants.

Application of the Latest Land Use Data for Numerical Simulation of Urban Thermal Environment in the Daegu (최신토지피복자료를 이용한 대구시의 열환경 수치모의)

  • Lee, Hyun-Ju;Lee, Kwi-Ok;Won, Gyeong-Mee;Lee, Hwa-Woon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.3
    • /
    • pp.196-210
    • /
    • 2009
  • The land surface precesses is very important to predict urban meteorological conditions. Thus, the latest land use data set to reflect the rapid progress in urbanization was applied to simulate urban thermal environment in Daegu. Because use of the U.S geological Survey (USGS) 25-category data, currently in the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5), does not accurately described the heterogeneity of urban surface, we replaced the land use data in USGS with the latest land-use data of the Korea Ministry of Environment over Daegu. The single urban category in existing 24-category U.S. Geological survey land cover classification used in MM5 was divided into 5 classes to account for heterogeneity of urban land cover. The new land cover classification (MC-LULC) improved the capability of MM5 to simulate the daytime part of the diurnal temperature cycle in the urban area. The 'MC-LULC' simulation produced the observed temperature field reasonably well, including spatial characteristics. The warm cores in western Daegu is characterized by an industrial area.

A Study on Land Cover Map of UAV Imagery using an Object-based Classification Method (객체기반 분류기법을 이용한 UAV 영상의 토지피복도 제작 연구)

  • Shin, Ji Sun;Lee, Tae Ho;Jung, Pil Mo;Kwon, Hyuk Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.25-33
    • /
    • 2015
  • The study of ecosystem assessment(ES) is based on land cover information, and primarily it is performed at the global scale. However, these results as data for decision making have a limitation at the aspects of range and scale to solve the regional issue. Although the Ministry of Environment provides available land cover data at the regional scale, it is also restricted in use due to the intrinsic limitation of on screen digitizing method and temporal and spatial difference. This study of objective is to generate UAV land cover map. In order to classify the imagery, we have performed resampling at 5m resolution using UAV imagery. The results of object-based image segmentation showed that scale 20 and merge 34 were the optimum weight values for UAV imagery. In the case of RapidEye imagery;we found that the weight values;scale 30 and merge 30 were the most appropriate at the level of land cover classes for sub-category. We generated land cover imagery using example-based classification method and analyzed the accuracy using stratified random sampling. The results show that the overall accuracies of RapidEye and UAV classification imagery are each 90% and 91%.