• 제목/요약/키워드: land classification

검색결과 924건 처리시간 0.024초

국토변화탐지를 위한 지형분류체계 개선안 (Proposal of Feature Classification System for Land Change Detection)

  • 박준구;노명종;조우석;방기인
    • 대한공간정보학회지
    • /
    • 제19권2호
    • /
    • pp.9-17
    • /
    • 2011
  • 국내 여러 기관에서 토지피복분류체계, 토지이용현황분류체계 등 국토의 정확한 현황 파악을 위해 다양한 지형분류체계를 활용 중에 있다. 그러나 이러한 분류체계로 국토변화를 탐지하기에는 적용성이 떨어지며, 변화지역을 추출하기에도 적합하지 않다는 문제점을 가지고 있다. 본 연구에서는 국토에 대한 자연적, 인위적 변화요소들을 모두 효과적으로 나타낼 수 있는 표준 지형분류체계를 제안하고자 한다. 이를 위해 국내외 유사 지형분류체계에 대한 비교 분석을 수행하고, 이를 바탕으로 표준 지형분류 항목을 제안하였다. 자동 지형분류 적용 가능성을 평가하기 위하여 감독분류 기반의 자동 지형분류와 선행지식 기반의 자동 지형분류를 수행하여 정확도를 평가하였다.

토지피복분류에 관한 이론적 연구 - 자연환경관리를 중심으로 - (A Theoretical Study on Land Cover Classification - Focused on Natural Environment Management -)

  • 전성우;김귀곤;박종화;이동근
    • 한국환경복원기술학회지
    • /
    • 제2권1호
    • /
    • pp.29-37
    • /
    • 1999
  • Land cover classification is an essential basic information in natural environment management; however, land cover classification studies in Korea have not yet been proceeded to a sufficient level. At the present, only a limited number of the precedent studies that only cover definite city area has been conducted. Furthermore, there is almost no research conducted on the land cover classification schemes that could accurately classify the Korea's land cover conditions. This study primarily focuses on the land cover classification scheme which carries the most urgent priority in order to classify and to map out the Korean land cover conditions. In order to develop the most suitable land cover classification scheme, many foreign land cover classification cases and projects that are being carried out were reviewed in depth. The land cover classification scheme this study proposes comprises 3 levels : The first level consists of 7 different classes; the second level consists of 22 different classes; and the third level is made up of 50 classes. The land cover classification map will serve many important roles in natural environment management, such as the conjecture of natural habitats and estimation of oxygen production or carbon dioxide absorption capability of a forest. In water pollution modelling, the land cover classification data can be used to estimate and locate non-point sources of water pollution. If applied to a watershed, modelling it will allow to estimate the total amount of pollution from non-point sources of pollution in the water shed. The land cover classification data will also be good as a barometer data that determines defusion of air pollutants in air pollution modelling.

  • PDF

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • 대한원격탐사학회지
    • /
    • 제20권5호
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

Reducing Spectral Signature Confusion of Optical Sensor-based Land Cover Using SAR-Optical Image Fusion Techniques

  • ;Tateishi, Ryutaro;Wikantika, Ketut;M.A., Mohammed Aslam
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.107-109
    • /
    • 2003
  • Optical sensor-based land cover categories produce spectral signature confusion along with degraded classification accuracy. In the classification tasks, the goal of fusing data from different sensors is to reduce the classification error rate obtained by single source classification. This paper describes the result of land cover/land use classification derived from solely of Landsat TM (TM) and multisensor image fusion between JERS 1 SAR (JERS) and TM data. The best radar data manipulation is fused with TM through various techniques. Classification results are relatively good. The highest Kappa Coefficient is derived from classification using principal component analysis-high pass filtering (PCA+HPF) technique with the Overall Accuracy significantly high.

  • PDF

Synergic Effect of using the Optical and Radar Image Data for the Land Cover Classification in Coastal Region

  • Kim, Sun-Hwa;Lee, Kyu-Sung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1030-1032
    • /
    • 2003
  • This study a imed to analyze the effect of combined optical and radar image for the land cover classification in coastal region. The study area, Gyeonggi Bay area has one of the largest tidal ranges and has frequent land cover changes due to the several reclamations and rather intensive land uses. Ten land cover types were classified using several datasets of combining Landsat ETM+ and RADARSAT imagery. The synergic effects of the merged datasets were analyzed by both visual interpretation and an ordinary supervised classification. The merged optical and SAR datasets provided better discrimination among the land cover classes in the coastal area. The overall classification accuracy of merged datasets was improved to 86.5% as compared to 78% accuracy of using ETM+ only.

  • PDF

Classification of Land Cover on Korean Peninsula Using Multi-temporal NOAA AVHRR Imagery

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제19권5호
    • /
    • pp.381-392
    • /
    • 2003
  • Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.

지식 기반 시스템에서 GIS 자료를 활용하기 위한 기계 학습 기법에 관한 연구 - Landsat ETM+ 영상의 토지 피복 분류를 사례로 (A Machine learning Approach for Knowledge Base Construction Incorporating GIS Data for land Cover Classification of Landsat ETM+ Image)

  • 김화환;구자용
    • 대한지리학회지
    • /
    • 제43권5호
    • /
    • pp.761-774
    • /
    • 2008
  • 원격탐사에서 위성 영상의 디지털 처리 기술이 발달하면서 GIS 자료와 지식 기반 전문가 시스템과의 통합에 대한 관심이 증가하고 있다. 본 연구에서는 위성영상을 토지피복 분류하는 과정에서 GIS 자료를 통합하기 위하여 기계 학습 기법과 규칙 기반 분류 기법을 적용하였다. 사례 지역을 대상으로 Landsat ETM+ 영상과 고도, 경사, 향, 수역과의 거리, 도로와의 거리, 인구밀도 등의 GIS 자료를 함께 활용하였다. C5.0 추론 기계 학습 알고리듬을 이용하여 350개의 표본점으로부터 결정 트리와 분류 규칙을 생성하였다. 본 연구에서 도출된 규칙을 이용하여 분류한 결과, 고독 수역과의 거리, 인구밀도 등의 GIS 자료가 규칙 기반 분류에 효과적인 것으로 나타났다. 본 연구에서 제안한 기계 학습과 지식 기반 분류 기법을 이용하면 다양한 GIS 자료들을 통합하여 위성영상을 보다 효과적으로 분류할 수 있다.

Land Cover Classification of RapidEye Satellite Images Using Tesseled Cap Transformation (TCT)

  • Moon, Hogyung;Choi, Taeyoung;Kim, Guhyeok;Park, Nyunghee;Park, Honglyun;Choi, Jaewan
    • 대한원격탐사학회지
    • /
    • 제33권1호
    • /
    • pp.79-88
    • /
    • 2017
  • The RapidEye satellite sensor has various spectral wavelength bands, and it can capture large areas with high temporal resolution. Therefore, it affords advantages in generating various types of thematic maps, including land cover maps. In this study, we applied a supervised classification scheme to generate high-resolution land cover maps using RapidEye images. To improve the classification accuracy, object-based classification was performed by adding brightness, yellowness, and greenness bands by Tasseled Cap Transformation (TCT) and Normalized Difference Water Index (NDWI) bands. It was experimentally confirmed that the classification results obtained by adding TCT and NDWI bands as input data showed high classification accuracy compared with the land cover map generated using the original RapidEye images.

Improvement of Land Cover Classification Accuracy by Optimal Fusion of Aerial Multi-Sensor Data

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
    • 한국측량학회지
    • /
    • 제36권3호
    • /
    • pp.135-152
    • /
    • 2018
  • The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.

Comparison of Three Land Cover Classification Algorithms -ISODATA, SMA, and SOM - for the Monitoring of North Korea with MODIS Multi-temporal Data

  • Kim, Do-Hyung;Jeong, Seung-Gyu;Park, Chong-Hwa
    • 대한원격탐사학회지
    • /
    • 제23권3호
    • /
    • pp.181-188
    • /
    • 2007
  • The objective of this research was to investigate the optimal land cover classification algorithm for the monitoring of North Korea with MODIS multi-temporal data based on monthly phenological characteristics. Three frequently used land cover classification algorithms, ISODATA1), SMA2), and SOM3) were employed for this study; the land cover categories were forest, grass, agricultural, wetland, barren, built-up, and water body. The outcomes of the study can be summarized as follows. First, the overall classification accuracy of ISODATA, SMA, and SOM was 69.03%, 64.28%, and 73.57%, respectively. Second, ISODATA and SMA resulted in a higher classification accuracy of forest and agricultural categories, but SOM performed better for the built-up area, bare soil, grassland, and water. A possible explanation for this difference would be related to the difference of sensitivity against the vegetation activity. This would be related to the capability of SOM to express all of their values without any loss of data by maintaining the topology between pixels of primitive data after classification, while ISODATA and SMA retain limited amount of data after normalization process. Third, we can conclude that SOM is the best algorithm for monitoring the land cover change of North Korea.