• Title/Summary/Keyword: land classification

Search Result 924, Processing Time 0.026 seconds

Proposal of Feature Classification System for Land Change Detection (국토변화탐지를 위한 지형분류체계 개선안)

  • Park, Jun-Ku;Noh, Myoung-Jong;Cho, Woo-Sug;Bang, Ki-In
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.9-17
    • /
    • 2011
  • For the exact status of the land such as land cover classification and land use classification, feature classification system has been utilized in several organizations and agencies. However, those classification systems are limited to detection of land change and it's also not suited for the extraction of land changed. In this study, we would proposed a standard feature classification system which presents both in natural and artificial change of land effectively. Based on comparison and analysis of domestic and foreign relevant feature classification system, we proposed a standard feature classification system. In order to validate the applicability of the proposed feature classification system, we evaluated the accuracy with using automatic feature classification based on supervised classification and pre-knowledge hierarchical classification.

A Theoretical Study on Land Cover Classification - Focused on Natural Environment Management - (토지피복분류에 관한 이론적 연구 - 자연환경관리를 중심으로 -)

  • Jeon, Seong-Woo;Kim, Kwi-Gon;Park, Chong-Hwa;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.1
    • /
    • pp.29-37
    • /
    • 1999
  • Land cover classification is an essential basic information in natural environment management; however, land cover classification studies in Korea have not yet been proceeded to a sufficient level. At the present, only a limited number of the precedent studies that only cover definite city area has been conducted. Furthermore, there is almost no research conducted on the land cover classification schemes that could accurately classify the Korea's land cover conditions. This study primarily focuses on the land cover classification scheme which carries the most urgent priority in order to classify and to map out the Korean land cover conditions. In order to develop the most suitable land cover classification scheme, many foreign land cover classification cases and projects that are being carried out were reviewed in depth. The land cover classification scheme this study proposes comprises 3 levels : The first level consists of 7 different classes; the second level consists of 22 different classes; and the third level is made up of 50 classes. The land cover classification map will serve many important roles in natural environment management, such as the conjecture of natural habitats and estimation of oxygen production or carbon dioxide absorption capability of a forest. In water pollution modelling, the land cover classification data can be used to estimate and locate non-point sources of water pollution. If applied to a watershed, modelling it will allow to estimate the total amount of pollution from non-point sources of pollution in the water shed. The land cover classification data will also be good as a barometer data that determines defusion of air pollutants in air pollution modelling.

  • PDF

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

Reducing Spectral Signature Confusion of Optical Sensor-based Land Cover Using SAR-Optical Image Fusion Techniques

  • ;Tateishi, Ryutaro;Wikantika, Ketut;M.A., Mohammed Aslam
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.107-109
    • /
    • 2003
  • Optical sensor-based land cover categories produce spectral signature confusion along with degraded classification accuracy. In the classification tasks, the goal of fusing data from different sensors is to reduce the classification error rate obtained by single source classification. This paper describes the result of land cover/land use classification derived from solely of Landsat TM (TM) and multisensor image fusion between JERS 1 SAR (JERS) and TM data. The best radar data manipulation is fused with TM through various techniques. Classification results are relatively good. The highest Kappa Coefficient is derived from classification using principal component analysis-high pass filtering (PCA+HPF) technique with the Overall Accuracy significantly high.

  • PDF

Synergic Effect of using the Optical and Radar Image Data for the Land Cover Classification in Coastal Region

  • Kim, Sun-Hwa;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1030-1032
    • /
    • 2003
  • This study a imed to analyze the effect of combined optical and radar image for the land cover classification in coastal region. The study area, Gyeonggi Bay area has one of the largest tidal ranges and has frequent land cover changes due to the several reclamations and rather intensive land uses. Ten land cover types were classified using several datasets of combining Landsat ETM+ and RADARSAT imagery. The synergic effects of the merged datasets were analyzed by both visual interpretation and an ordinary supervised classification. The merged optical and SAR datasets provided better discrimination among the land cover classes in the coastal area. The overall classification accuracy of merged datasets was improved to 86.5% as compared to 78% accuracy of using ETM+ only.

  • PDF

Classification of Land Cover on Korean Peninsula Using Multi-temporal NOAA AVHRR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.381-392
    • /
    • 2003
  • Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.

A Machine learning Approach for Knowledge Base Construction Incorporating GIS Data for land Cover Classification of Landsat ETM+ Image (지식 기반 시스템에서 GIS 자료를 활용하기 위한 기계 학습 기법에 관한 연구 - Landsat ETM+ 영상의 토지 피복 분류를 사례로)

  • Kim, Hwa-Hwan;Ku, Cha-Yang
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.5
    • /
    • pp.761-774
    • /
    • 2008
  • Integration of GIS data and human expert knowledge into digital image processing has long been acknowledged as a necessity to improve remote sensing image analysis. We propose inductive machine learning algorithm for GIS data integration and rule-based classification method for land cover classification. Proposed method is tested with a land cover classification of a Landsat ETM+ multispectral image and GIS data layers including elevation, aspect, slope, distance to water bodies, distance to road network, and population density. Decision trees and production rules for land cover classification are generated by C5.0 inductive machine learning algorithm with 350 stratified random point samples. Production rules are used for land cover classification integrated with unsupervised ISODATA classification. Result shows that GIS data layers such as elevation, distance to water bodies and population density can be effectively integrated for rule-based image classification. Intuitive production rules generated by inductive machine learning are easy to understand. Proposed method demonstrates how various GIS data layers can be integrated with remotely sensed imagery in a framework of knowledge base construction to improve land cover classification.

Land Cover Classification of RapidEye Satellite Images Using Tesseled Cap Transformation (TCT)

  • Moon, Hogyung;Choi, Taeyoung;Kim, Guhyeok;Park, Nyunghee;Park, Honglyun;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.79-88
    • /
    • 2017
  • The RapidEye satellite sensor has various spectral wavelength bands, and it can capture large areas with high temporal resolution. Therefore, it affords advantages in generating various types of thematic maps, including land cover maps. In this study, we applied a supervised classification scheme to generate high-resolution land cover maps using RapidEye images. To improve the classification accuracy, object-based classification was performed by adding brightness, yellowness, and greenness bands by Tasseled Cap Transformation (TCT) and Normalized Difference Water Index (NDWI) bands. It was experimentally confirmed that the classification results obtained by adding TCT and NDWI bands as input data showed high classification accuracy compared with the land cover map generated using the original RapidEye images.

Improvement of Land Cover Classification Accuracy by Optimal Fusion of Aerial Multi-Sensor Data

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.135-152
    • /
    • 2018
  • The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.

Comparison of Three Land Cover Classification Algorithms -ISODATA, SMA, and SOM - for the Monitoring of North Korea with MODIS Multi-temporal Data

  • Kim, Do-Hyung;Jeong, Seung-Gyu;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.181-188
    • /
    • 2007
  • The objective of this research was to investigate the optimal land cover classification algorithm for the monitoring of North Korea with MODIS multi-temporal data based on monthly phenological characteristics. Three frequently used land cover classification algorithms, ISODATA1), SMA2), and SOM3) were employed for this study; the land cover categories were forest, grass, agricultural, wetland, barren, built-up, and water body. The outcomes of the study can be summarized as follows. First, the overall classification accuracy of ISODATA, SMA, and SOM was 69.03%, 64.28%, and 73.57%, respectively. Second, ISODATA and SMA resulted in a higher classification accuracy of forest and agricultural categories, but SOM performed better for the built-up area, bare soil, grassland, and water. A possible explanation for this difference would be related to the difference of sensitivity against the vegetation activity. This would be related to the capability of SOM to express all of their values without any loss of data by maintaining the topology between pixels of primitive data after classification, while ISODATA and SMA retain limited amount of data after normalization process. Third, we can conclude that SOM is the best algorithm for monitoring the land cover change of North Korea.