• Title/Summary/Keyword: laminated timber

Search Result 94, Processing Time 0.02 seconds

Fracture Toughness of Glass Fiber Reinforced Laminated Timbers (유리섬유 보강적층재의 파괴인성 특성)

  • Kim, Keon-ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.861-867
    • /
    • 2015
  • The Compact Tension (CT) type test was performed in order to evaluate the fracture toughness performance of glass fiber-reinforced laminated timber. Glass fiber textile and sheet Glass fiber reinforced plastic were used as reinforcement. The reinforced laminated timber was formed by inserting and laminating the reinforcement between laminated woods. Compact tension samples are produced under ASTM D5045. The sample length was determined by taking account of the end distance of 7D, and bolt holes (12 mm, 16 mm, 20 mm) had been made at the end of artificial notches in advance. The fracture toughness load of sheet fiberglass reinforced plastic reinforced laminated timber was increased 33 % in comparison to unreinforced laminated timber while the glass fiber textile reinforced laminated timber was increased 152 %. According to Double Cantilever Beam theory, the stress intensity factor was 1.08~1.38 for sheet glass fiber reinforced plastic reinforced laminated timber and 1.38~1.86 for glass fiber textile reinforced laminated timber, respectively. That was because, for the glass fiber textile reinforced laminated timber, the fiber array direction of glass fiber and laminated wood orthogonal to each other suppressed the split propagation in the wood.

Evaluation on Flexural Performance of Steel Plate Reinforced GLT Beams (강판 보강 집성재 보의 휨성능 평가 연구)

  • Park, Keum-Sung;Lee, Sang-Sup;Kwak, Myong-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.39-49
    • /
    • 2020
  • In this study, we will develop a hybrid cross-sectional shape of steel inserted type glued-laminated timber that can improve the strength of structural glued-laminated timber and maximize the ductility by using steel plate with excellent tensile and deformation ability. A total of three specimens were fabricated and the flexural performance test was carried out to evaluate the structural performance of the steel inserted type glued-laminated timber. In order to compare the effect of steel inserted glued-laminated timber, one structural glued-laminated timber test specimen composed of pure wood was manufactured. In addition, in order to evaluate the adhesion performance of the steel inserted, one each of a screw joint test specimen and a polyurethane joint test specimen was prepared. As a result, all the specimens showed the initial crack in the finger joint near the force point. This has been shown to be a cause of crack diffusion and strength degradation. The use of finger joints in the maximum moment section is considered to affect the strength and ductility of the glued-laminated timber beam. Polyurethane-adhesive steel inserted glued-laminated timber showed fully-composite behavior with little horizontal separation between the steel plate and glued-laminated timber until the maximum load was reached. This method has been shown to exhibit sufficient retention bending performance.

Aging Characteristics of Bolt Pretension of Stress-laminated Timber (응력적층재의 볼트 압체력 경시변화)

  • Eom, Chang-Deuk;Lee, Sang-Joon;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.505-511
    • /
    • 2011
  • In this study, it is carried out to analysis of the bolt pretension of the stress-laminated timber. Bolt pretension of stress-laminated timber was decreased by time. The loss of force is caused by moisture content, shrinkage of wood. After re-stressing the stress-laminated timber, the rate of force decrement was slowed significantly. To use of stress-laminated timber for the service, it is necessary to make an accurate estimate of force. It is clear that is different between actual value and predicted value changes by existing model for bolt pretension of stress-laminated timber. Accordingly, considering the time and the external environment, the development of prediction model is needed.

Physical and Mechanical Properties of Cross Laminated Timber Using Plywood as Core Layer (합판을 코어로 사용한 교호 집성재의 물리·기계적 성질)

  • Choi, Chul;Yuk, Cho-Rong;Yoo, Ji-Chang;Park, Jae-Young;Lee, Chang-Goo;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.86-95
    • /
    • 2015
  • This study was performed to study physical and mechanical properties of hybrid cross laminated timber (HCLT) with plywood as core layer in order to improve its mechanical properties for wooden housing. MOE, MOR, and dimensional stability of the HCLT were determined, depending on plywood composition and lamination direction. MOR value of the HCLT was improved as much as that of the glued laminated timber, which was 59.6% stronger than that of the cross laminated timber (CLT) control group. All MOE values of the HCLT were similar to glued laminated timber structure control group regardless of plywood composition and lamination directions. The dimensional stability of the HCLT was better than those of the glued laminated timber and CLT control group, owing to the use of plywood in the core.

A comparative analysis study of fire resistance performance according to types of adhesives in Glued laminated timber (구조용 집성재의 접착제 종류에 따른 내화성능 비교 분석)

  • Choi, Yun Jeong;Hong, Seong In;An, Jae Hong;Kim, Byoung il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.25-26
    • /
    • 2022
  • In this study, glued laminated timber were manufactured by different types of adhesives for larch and spruce. Adhesives used to manufacture glued laminated timber include resorcinol resin, phenol resorcinol resin, melamine resin, and polyurethane. The char thickness and char rate according to the type of adhesive forglued laminated timber were analyzed. Melamine, resorcinol, and polyurethane showed excellent fire resistance performance in that order.

  • PDF

End Distance of Single-shear Screw Connection in Cross Laminated Timber

  • Oh, Jung-Kwon;Kim, Gwang-Chul;Kim, Kwang-Mo;Lee, Jun-Jae;Hong, Jung-Pyo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.746-752
    • /
    • 2017
  • Cross-laminated timber (CLT) is a relatively new engineered wood for timber construction. It is a great shear wall material. It was known that the shear performance of the CLT wall depends on the performance of connections. In connection, nail or screw has to be installed with a certain distance from the end of the timber. Current building code specifies the distance on the name of end distance. The end distance was decided as a minimum distance not to make splitting or tearing out in lumber or glued laminated timber. As a relatively new engineered wood, the end distance of CLT connection need to be identified because CLT is cross-wisely glued lumber products like plywood. Different from glued laminated timber or lumber, cross layer of CLT may prevent wood from splitting or tearing-out. As a result, the end distance of CLT was expected to be reduced than glued laminated timber. The shorter end distance may let more versatile connector design possible. In this study, prior to developing novel connection for CLT, the end distance of CLT connection was experimentally investigated to identify the end distance limitation. The experiments showed that the end distance can be reduced from 7D to 6D, in case of the tested CLT combination and screw in this study.

Failure analysis of ribbed cross-laminated timber plates

  • Lavrencic, Marko;Brank, Bostjan
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.79-93
    • /
    • 2018
  • The process of material failure i.e. cracks development and their propagation in an experiment related to the bending collapse of cross laminated timber plate with ribs is described. Numerical simulation of such an experiment by the nonlinear finite element method is presented. The numerical model is based on Hashin failure criteria, initially developed for unidirectional composites, and on material softening concept applied by the smeared crack approach. It is shown that such a numerical model can be used for an estimation of the limit load and the limit displacement of a cross laminated timber ribbed plate.

Study on the Mechanical Properties of Tropical Hybrid Cross Laminated Timber Using Bamboo Laminated Board as Core Layer

  • GALIH, Nurdiansyah Muhammad;YANG, Seung Min;YU, Seung Min;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.245-252
    • /
    • 2020
  • This study was performed to analyze the mechanical properties of tropical hybrid cross-laminated timber (CLT) with bamboo laminated board as the core layer in order to evaluate the possibility of its use as a CLT material. Bamboo board was used as the core layer and the tropical species Acacia mangium willd., from Indonesia, was used as the lamination in the outer layer. The modulus of elasticity (MOE), modulus of rupture (MOR), and shear strength of the hybrid CLT were measured according to APA PRG 320-2018 Standard for Performance-Rated Cross-Laminated Timber. The results show that the bending MOE of the hybrid CLT was found to be 2.76 times higher than SPF (Spruce Pine Fir) CLT. The reason why the high MOE value was shown in bamboo board and hybrid CLT applied bamboo board is because of high elasticity of bamboo fiber. However, the shear strength of the hybrid CLT was 0.8 times lower than shear strength of SPF CLT.

Elasto-plastic behaviour of joint by inserting length of H-beam and structural laminated timber (H형강과 구조용집성재의 삽입길이에 따른 접합부의 탄소성 거동)

  • Kim, Soon Chul;Yang, Il Seung;Moon, Youn Joon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.251-259
    • /
    • 2006
  • In some cases, wooden structures are used for medium-rise buildings. It is therefore necessary to develop and test a new structural system for medium-rise buildings using wooden structures. This study deals with high-performance, laminated, timber-based composite members, which consist of structural laminated timber and H-beam. Simple beam tests were performed to determine the strength, stress distributions, and failure patterns of laminated timber. The main parameters are the insertinglength (1, 1.5, and 2 times the H-beam height) and the epoxy between the top/bottom flange of the H-beam and the top/bottom flange of the laminated timber. The results of the test show that the specimen with an inserting length that is 2 times the H-beam height was characterized by fairly god strength and stiffness.

Physical Properties of Fabric E-glass Fiber Reinforced Laminated Timber (I) - Mechanical Properties - (직물유리섬유 강화집성재의 물리적 특성(제1보) - 기계적 특성 -)

  • Jung, In-Suk;Lee, Weon-Hee;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.23-34
    • /
    • 2003
  • This study was carried out to investigate the mechanical properties of fabric E-glass fiber reinforced laminated timber. Specimens used to Korean red pine(Pinus densiflora) and Japanese larch(Larix kaemferi). Fabric E-glass fiber was inserted in the solid wood with aqueous polymer-isocyanate resin(MPU-500). The results were as follows: 1. Aqueous polymer-isocyanate resin(MPU-500) was good resin to manufacture laminated timber. specially, it was satisfied to property standard of construction laminated timber(KS F 3021) except for two ply glass fiber. 2. Bending and shear strengths of solid wood inserted with fabric glass fibers were not different from control solid wood. But, proportional limit bending stress was increased following the number of fabric glass fibers. Therefore, it was considered that to improve the bending and shear strength of fabric glass fiber reinforced laminated timber, the glass fiber thickness and its mesh should be modified to fitness following working conditions.