• Title/Summary/Keyword: laminated rotor

Search Result 35, Processing Time 0.027 seconds

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.734-740
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. The hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered In the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton’s principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility. The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_3$) coupling. It Is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b}$ /rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.e.

Performance Test of Low Temperature Regeneration Polymeric Desiccant Rotor (고분자 제습로터의 저온재생 성능시험)

  • Lee, Jin-Kyo;Lee, Dae-Young;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.629-632
    • /
    • 2009
  • The polymeric desiccant rotor is made from the super absorbent polymer by ion modification. The moisture sorption capacity of the super desiccant polymer(SDP) is 4 to 5 times larger than those of common desiccant meterials such as silica gel or zeolite. It is also known that SDP can be regenerated even at the relatively low temperature. To fabricate the desiccant rotor, firstly the SDP was laminated by coating the SDP on polyethylene sheet. Then corrugated and rolled up into a rotor. The diameter, the depth, the dimensions of the corrugated channel, etc. were pre-determined from numerical simulation on the heat and mass transfer in the desiccant rotor. The dehumidification performance was tested in a climate chamber. The relevant tests were carried out at the process air inlet temperature of $32^{\circ}C$, the regeneration air inlet temperature of $60^{\circ}C$ and the inlet dew-point temperature of both the process air and the regeneration air of $18.5^{\circ}C$, when the rotation period is long, the moisture sorption is not effective. In the desiccant rotor developed in this study, the optimum rotation period is found about 350s at the regeneration temperature of $60^{\circ}C$. It was found from further experiments that the optimum rotation tends to decreases as the regeneration temperature increases. Meanwhile, the outlet temperature of the process air deceases monotonically as the rotation period increases.

  • PDF

ANALYSIS OF A LAMINATED COMPOSITE WIND TURBINE BLADE CHARACTERISTICS THROUGH MATHEMATICAL APPROACH

  • CHOI, YOUNG-DO;GO, JAEGWI;KIM, SEOKCHAN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.367-380
    • /
    • 2019
  • A 1kW-class horizontal axis wind turbine (HAWT) rotor blade is taken into account to investigate elastic characteristics in 2-D. The elastic blade field is composed of symmetric cross-ply laminated composite material. Blade element momentum theory is applied to obtain the boundary conditions pressuring the blade, and the plane stress elasticity problem is formulated in terms of two displacement parameters with mixed boundary conditions. For the elastic characteristics a fair of differential equations are derived based on the elastic theory. The domain is divided by triangular and rectangular elements due to the complexity of the blade configuration, and a finite element method is developed for the governing equations to search approximate solutions. The results describe that the elastic behavior is deeply influenced by the layered angle of the middle laminate and the stability of the blade can be improved by controlling the layered angle of laminates, which can be evaluated by the mathematical approach.

Design and Analysis of Double Excited 3-Degree-of-Freedom Motor for Robots

  • Kwon, Byung-Il;Kim, Young-Boong
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.618-625
    • /
    • 2011
  • This paper presents a double excited three degree-of-freedom (3DOF) motor. The proposed 3DOF motor is designed with a laminated structure, making it easy to manufacture. In addition, it has windings on the stator and rotor, and does not require an expensive permanent magnet. We explain the structure, principle of motion, and design of the proposed motor, and perform an analysis of the static characteristics using the two- and three-dimensional finite element methods (3D FEM). The feasibility of 3D FEM analysis is confirmed by comparing the 3D FEM analysis and experimental results for the rolling and pitching motion. We also confirm the occurrence of holding torque in every motion.

Characteristic Analysis of the ALA-type Reluctance Synchronous Motor (ALA형 리럭턴스 동기 전동기의 특성해석)

  • Choi, Kyeong-Ho;Kim, Nam-Hun;Balk, Won-Sik;Kim, Dong-Hee;Hwang, Don-Ha;Kim, Min-Huei
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.955-957
    • /
    • 2002
  • This paper presents a detailed characteristic of reluctance synchronous motor (RSM) which has a axially laminated anisotropic (ALA) structure of the rotor. First of all, the analysis of a magnetic circuit field between stator and rotor should be achieved in order to predict the performance characteristics of the RSM. For the analysis of a magnetic circuit field, the finite element (FE) analysis is used. The analytical result of the inductance, flux distribution, vector potential and simulation results shows along with the load condition.

  • PDF

On The Characteristics Of Small Size Three Phase Induction Motor With A Solid Iron Potor (강괴회전자를 가진 소용량 3상유도전동기의 특성 해석에 관한 연구)

  • 이윤종;임달호;정필선
    • 전기의세계
    • /
    • v.24 no.2
    • /
    • pp.63-70
    • /
    • 1975
  • The solid-iron rotor induction motor is the squirral cage type induction motor with its rotor core consisting of solid iron in stead of a laminated core. The specific feature of this motor are that its structure is simple and firm, and therefore provides the great convenience in its operation and that its starting characteristic are excellent. this study is aimedto derive the equation for theroretical evaluation of the speed-torque characteristics of the motor by use of maxwell's equation. Through the series of test on the speed-torque characteristics of this motor which is experimentally constructed, we have proved the feasibility of the equaiton which is derived theoretically to calculate the torque of the motor. In addition we have obtained its general charastristics experimentally.

  • PDF

Prediction of Fatigue Life for Composite Rotor Blade of Multipurpose Helicopter Using Strength Degradation Model (강도저하모델을 이용한 다목적헬리콥터용 복합재로터깃 피로수명예측)

  • 권정호;서창원
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.50-59
    • /
    • 2001
  • The predictions of residual strength evolution and fatigue life of full scale composite rotor blade for multipurpose helicopter were studied using a strength degradation model. Flight-by-flight load spectrum was developed on the basis of FELIX standard spectrum data. The laminated structural analysis was also performed to obtain corresponding local stress and/or strain spectra for each ply of laminate skin and glass roving spar structures around the blade root where fatigue damage was severely anticipated.

  • PDF

Comparison of Two Rotor Configurations by Changing the Amount of Magnet and Reluctance Components

  • Beser, Esra Kandemir;Camur, Sabri;Arifoglu, Birol;Beser, Ersoy
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.155-164
    • /
    • 2015
  • In this paper, two rotor configurations including different amount of magnet and reluctance parts are presented. The rotors are constituted by means of a flexible hybrid motor structure. Considerable features of the hybrid structure are that the combination of the magnet and reluctance parts can be suitably modified and the mechanical angle (${\beta}$) between the parts can also be varied. Two hybrid rotor configurations have been considered in this study. First, finite element (FE) simulations were carried out and the torque behaviors of the motors were predicted. The average torque ($T_{avg}$) and maximum torque ($T_{max}$) curves were obtained from FE simulations in order to find suitable ${\beta}$. Mathematical model of the motors was formed in terms of a,b,c variables considering the amount of the magnet and reluctance parts on the rotor and simulations were performed. Rotor prototypes, motor drive and drive method were introduced. Torque profiles of the motors were obtained by static torque measurement and loaded tests were also realized. Thus, simulation results were verified by experimental study. There is a good match between predictions and measurements. The proposed motors are operated with electrical $120^{\circ}$ mode as a brushless DC motor (BLDC) and torque versus speed characteristics show a compound DC motor characteristic. The motors can be named as brushless DC compound motors.

Effects of Composite Couplings on Hub Loads of Hingeless Rotor Blade (무힌지 로터 블레이드의 허브하중에 대한 복합재료 연성거동 연구)

  • Lee, Ju-Young;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.29-36
    • /
    • 2004
  • In this work, the effect of composite couplings on hub loads of a hingeless rotor in forward flight is investigated. The hingeless composite rotor blade is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear, torsional warping are considered in the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton's principle. The blade response and hub loads are calculated using a finite element formulation in space and time. The aerodynamic forces acting on the blade are calculated by quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility. The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap $({\delta}3)$ or $pitch-lag({\alpha}1)$ coupling. It is found that the elastic couplings have a substantial effect on the behavior of $N_b/rev$ hub loads. Nearly 10 to 40% of hub loads is reduced by appropriately tailoring the fiber orientation angles in the laminae of the composite blade.

The Strain Evaluation of the Notch tip Area for the CFRP/GFRP Hybrid Laminate Plate using the SENT Specimen (SENT시험편을 이용한 CFRP/GFRP 하이브리드 적층재의 노치선단부 변형률 평가)

  • Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.15-21
    • /
    • 2014
  • The aim of this work is conduct the study on light weight and structural performance improvement of the composite wind power blade. GFRP (Glass Fiber Reinforced Plastic) pre-empted by CFRP(Carbon Fiber Reinforced Plastic), the major material of wind power blade, was identified the superiority of mechanical performance through the tensile and fatigue test. SENT(Single Edge Notched Tension) specimen fracture test was conducted on the specimen that laminated together 2 ply CFRP with 4 ply GFRP through DIC(Digital Image Correlation) analysis. The SENT specimen thickness and $a_0/W$ ratio is 1.45 mm and 0.2, respectively. The fracture test accomplished with displacement control with 0.1 mm/min at the room temperature. The experimental apparatus used for the fracture test consisted of a 50kN universal dynamic tester and CCD camera connected to a personal computer (PC), which was used to record images of the specimen surface. Following data acquisition, the images and load-displacements were transferred to the PC, on which the DIC software was implement. The experiment and DIC analysis results show that CFRP/GFRP laminated composite exhibits improvement of the strength, compared with that of the existing blade material. This study shows the result that the strength of CFRP rotor blade of wind turbine satisfies through the experimental and DIC method.