• Title/Summary/Keyword: laminated carbon fiber sheets

Search Result 7, Processing Time 0.019 seconds

Analytical Algorithm Predicting Compressive Stress-Strain Relationship for Concrete Confined with Laminated Carbon Fiber Sheets

  • Lee, Sang-Ho;Kim, Hyo-Jin
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2001
  • An analytical compressive stress-strain relationship model for circular and rectangular concrete specimens confined with laminated carbon fiber sheets (CFS) is studied. Tsai-Hill and Tsai-Wu failure criteria were used to implement orthotropic behavior of laminated composite materials. By using these criteria, an algorithm which analyzes the confinement effect of CFS on concrete was developed. The proposed analytical model was verified through the comparison with experimental data. Various parameters such as concrete strength, ply angle, laminate thickness, section shape, and ply stacking sequences were investigated. Numerical results by the proposed model effectively simulate the experimental compressive stress-strain behavior of CFS confined concrete specimens. Also, the pro-posed model estimates the compressive strength of the specimen to a high degree of accuracy.

  • PDF

An Experiment Study On the Stress-Strain Behavior of Concrete Columns Strengthened with Carbon Fiber Laminate (CFS보강 콘크리트 기둥부재의 응력-변형률 거동에 관한 실험적 연구)

  • 장일영;이상호;박훈규;나혁층
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.509-512
    • /
    • 1999
  • Recently, the Carbon Fiber Sheet(CFS) is widely used to structure. But the behavior of the concrete column which is strengthened with the CFS is not clearly defined yet. This study presents the result of experimental studies on the stress-strain behavior and the strengthening effect of laterally confined concrete by Carbon Fiber Sheets(CFS) subject to compression. In this experimental study, included three-parameters, which are the number of the sheets, the laminated angle of sheets, and concrete strength.

  • PDF

An experimental investigation of the flexural strengthening of preloaded self-compacted RC beams using CFRP sheets and laminates composites

  • Lattif, Youssef;Hamdy, Osman
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.307-313
    • /
    • 2022
  • This paper performs an experimental study on the flexural behavior of preloaded reinforced self-compacted concrete beams strengthened with carbon fiber reinforced polymers CFRP. A group of six preloaded strengthened beams was investigated along with one unstrengthened beam used as a reference beam RB. All beams have the same dimensions and reinforcement details: three beams are strengthened with CFRP laminates against flexural failure and three beams are strengthened with CFRP sheets. For simulating actual conditions, the beams are loaded before strengthening. Then, after strengthening, the beams are tested for flexural strength using 4-point loads where cracked and ultimate load and failure mode, along with load-deflection relation are recorded. To study the different configurations of strengthening, one layer, two layers, and U-wrap formation of laminates and sheets are considered. The results show that strengthing the RC beams using CFRP is an effective method to increase the beam's capacity by 47% up to 153% where deflection is reduced by 5%-80%. So, the beams strengthened with CFRP laminates have higher load capacity and lower ductility in comparison with the beams strengthened with CFRP sheets.

Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Xu, Yi-Peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.477-496
    • /
    • 2021
  • The main objective of this paper is to study vibration of sandwich open cylindrical panel with damaged core and FG face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions. It is seen that for the large amount of power-law index "P", increasing this parameter does not have significant effect on the non-dimensional natural frequency parameters of the FG sandwich curved panel. Results indicate that by increasing the value of isotropic damage parameter "D" up to the unity (fully damaged core) the frequency would tend to become zero. One can dictate the fiber variation profile through the radial direction of the sandwich panel via the amount of "P", "b" and "c" parameters. It should be noticed that with increase of volume fraction of fibers, the frequency parameter of the panels does not increase necessarily, so by considering suitable amounts of power-law index "P" and the parameters "b" and "c", one can get dynamic characteristics similar or better than the isotropic limit case for laminated FG curved panels.

Energy Absorption Characteristics of Composite Laminated Structural Member According to the Interface Number (복합적층 구조부재의 계면수 변화에 따른 에너지흡수특성)

  • Hwang, Woo-Chae;Lee, Kil-Sung;Cha, Cheon-Seok;Jung, Jong-An;Han, Gil-Young;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Ultimate goals in vehicle design can be summarized as environment-friendliness and safety. Along with these requirements, the importance of natural environment conservation has been focused lately. Therefore, reduced emission from vehicle and improved efficiency has become the top priority projects throughout the world. CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structure materials for vehicles, has a widely application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness. This study is to investigate the energy absorption characteristics of CFRP hat-shaped section members under the axial impact collapse test. The CFRP hat-shaped section members which manufactured from unidirectional prepreg sheets were made of 8plies. The axial impact collapse tests were carried out for each section members. The collapse mode and energy absorption characteristics were analyzed for CFRP hat-shaped section member according to the interface numbers(2, 3, 4, 6 and 7).

Strength Analysis of Joint Between Steel Plate and CFRP Laminated Splice Plates Patched by Adhesive (접착제를 사용한 CFRP와 강재 이음부의 강도 해석)

  • Park, Dae-Yong;Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.13-19
    • /
    • 2011
  • This paper presents the stress distribution of the damaged butt joint of steel plate using CFRP laminates when the flange in tension zone of steel box girder is welded by butt welding. When CFRP sheets are patched on tension flange of steel-box girder, the stress distribution of a vertical and normal direction on damaged welding part is shown as parameters such as a variation of the thickness of adhesive, the overlap length with steel, and the modulus of elasticity of CFRP sheets. For the study, we wrote the computer program using the EAS(Enhanced assumed strain) finite element method for plane strain that has a very fast convergency and exact stress for distorted shape.

The Experimental Analysis of the PVC Foam Cored CFRP Sandwich Composite for the Mixed Mode Delamination Characteristics (복합모드 층간분리특성에 대한 PVC폼 코아 탄소섬유샌드위치 복합재의 실험적 해석)

  • Kwak, Jung Hoon;Yun, Yu Seong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.8-13
    • /
    • 2018
  • The light weight composite materials have been replacing in high performance structures. The object of this study is to examine the effects of the initial crack location about a delamination in a PVC foam cored sandwich composite that is used for the strength improvement of structures. The initial crack location and fiber laminates thickness were changed with several types. The MMB specimen was used for evaluating the fracture toughness and crack behaviors. The material used in the experiment is a commercial twill carbon prepreg in CFRP material and Airex in PVC foam core. Sandwich laminate composites are composed by PVC foam core layer between CFRP face sheets. The face sheets were fabricated as 2 types of 5 and 8 plies. The initial cracks were located in a PVC form core and the interface of upper CFRP sheet. From the results, the crack initiation was affected with the location of the initial crack inserted in the PVC foam core. Among them, the initial crack at 1/3 of the upper part of the PVC foam core was the most rapid progression. And the critical energy release rate was $0.40kJ/m^2$, which is the lowest value when the initial crack was inserted into the interface between a PVC foam core and CFRP laminated with 5 plies. Meanwhile, the highest value of $1.27kJ/m^2$ was obtained when the initial crack was located at the center line in case of the 8 plies.