• Title/Summary/Keyword: lake-type reservoir

Search Result 17, Processing Time 0.031 seconds

Studies on the Phisical Environmental Factor Analysis for Water Quality Management in Man-made Lake of Korea (국내 인공댐호의 물리적 환경인자에 의한 호수특성 고찰에 관한 연구)

  • 김좌관;홍욱희
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.49-57
    • /
    • 1992
  • First, We classified man-made lakes in Korea as 4-type lakes, that is, there were River-run lakes, Dendritic lakes, Reservoir-lakes, River-mouth lakes, We studied on the environmental factors of 3-type lakes except River-mouth lakes, compared these lakes with natural lakes in foreign country. Environmental factors were watershed area, lake storage, mean depth, hydraulic retention time. As a results, 3-type lakes in Korea had remarkable differences one another according to above-mentioned environmental factors. First, We recognized that River-run lakes had higher nutrient loading according to having wider watershed area than natural lakes, and had lower algal growth rate according to shorter hydraulic retention time than natural lakes. Dendritic lake had higher nutrient loading than natural lakes, longer retention time than River-run lake. Reservoir-lakes had environmental factors between Dentritic lakes and River-run lakes. Therefore, If this studies had no quantitative results about various factors, We recognized that man-made lakes in korea had different environmental factors as compared with natural lakes, and had clear classification among 3-type lakes.

  • PDF

Relationship between Limnological Characteristics and Algal Bloom in Lake-type and River-Type Reservoirs, Korea (호소형 및 하천형 댐 호의 육수학적 특성과 조류발생과의 상관관계)

  • Kim, Jong-Min;Heo, Seong-Nam;Noh, Hye-Ran;Yang, Hee-Jeong;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.124-138
    • /
    • 2003
  • This paper aimed to analyze the relationship between alga3 bloom patterns and hydrological, limnological data which were collected from major reservoirs in Korea for 8 years (1990${\sim}$1997). Water temperature of river-type reservoirs showed wider seasonal fluctuations than that of lake-type. pH of lake-type reservoirs was low in winter season but high in summer season. In contrast, river-type reservoirs showed high pH in spring and autumn seasons as well, and very low in summer season. COD of lake-type reservoirs and Paldang reservoir was lower (2${\sim}$3 mg/L) than that of Geumgang and Nagdonggang reservoirs (6${\sim}$9 mg/L). Dissolved oxygen (DO) of river-type reservoirs was higher than that of lake-type reservoirs. Seasonal fluctuation pattern of DO saturation in river-type reservoirs was high (80 ${\sim}$100%) and remained relatively constant whereas lake-type reservoirs showed the highest level (93%) in late spring or early summer, which gradually decreased entering winter season(46${\sim}$06%). And monthly variation of DO saturation showed inverse proportion to water volume in lake-type reservoirs. Nutrients concentration in river-type lake is higher than lake-type. Seasonal fluctuation of nutrients (T-N, T-P) in lake-type reservoirs was relatively small than that of river-type reservoirs. Annual mean N/P mass ratio of lake-type reservoirs was higher than that of river-type. Transparency tended to related with the suspended solid concentration in river-type reservoirs. Algal bloom of lake-type and river-type reservoirs occurred at any time except rainfall and winter periods. And it dominated in summer and early autumn, respectively. Algal bloom of river-type reservoirs was higher than that of lake-type. Relationship between rainfall and chlorophyll- a in lake-type reservoirs was relatively high, however river-type reservoirs showed insignificant.

Effect of Temporal Distribution of Rainfall on Water-Surface Level of Sihwa Lake (강우분포유형이 저수지의 홍수위에 미치는 영향 (시화호를 중심으로))

  • Lee, Jong-Kyu;Lee, Jai-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.325-343
    • /
    • 2003
  • In this study, several types of rainfall time distribution of the probabilistic rainfall amount have been applied to the Sihwa Lake, located in Gyounggi Province, Korea and their runoff characteristics, obtained by the Hec-Hms program, according to the rainfall distribution types, were compared and analysed. And then, the influences of the above rainfall distribution types of the highest water level of the reservoir, computed through the reservoir flood routing, were analysed. The tidal variation was considered, performing the flood routing and, in addition, the new program, called “IWSEA”, which can compute the reservoir water level, was developed. To conclude, when the Mononobe type of the rainfall distribution was used, the largest inflow flood discharge into the reservoir was performed and the highest reservoir water level was obtained when the Pilgrim-Cordery type of the rainfall distribution was applied.

Effects of Salix subfragilis communities on water quality in Namgang Dam reservoir (남강댐 선버들 군락이 수질에 미치는 영향)

  • Kim, Ki Heung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1065-1076
    • /
    • 2022
  • The purpose of this study was to investigate the effect of the expansion and withering of Salix subfragilis communities on the water quality in Namgang Dam reservoir. The distribution area of the Salix subfragilis communities was 0.12 km2 in 2003 for the first time, but it was 3.58 km2 in 2019, which has increased rapidly by about 30 times in 16 years. However, in 2013, the distribution area has decreased by 0.17 km2 due to long-term immersion in high turbidity, and self-thinning in Salix subfragilis communities. The lake characteristics of reservoir showed a combination of lake type and river type in terms of average water depth, watershed area/lake surface area ratio, water residence time, flushing rate, and stratification. From the result of analyzing long-term changes in lake water quality, COD, TP, and chlorophyll-a in Salix subfragilis communities were significantly larger than those in the three points located in the central part of reservoir. In particular, the fact that the value of chlorophyll-a showed the maximum value in winter rather than summer, unlike the trend of the three points in the Namgang Dam water quality monitoring network, is thought to have occurred internally rather than externally. It can be estimated that one cause of this deterioration of the water quality in Namgang Dam reservoir is the huge amount of nutrients generated in the decomposition process of by-products such as fallen leaves, branches and withered trees in Salix subfragilis communities.

Classification and Water Quality Management of Agricultural Reservoirs (농업용 저수지의 유형분류 및 수질관리)

  • 윤경섭;이광식;김형중;김호일
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.66-77
    • /
    • 2003
  • Monitoring data from agricultural reservoirs throughout the country were analyzed to classify agricultural reservoirs according to physical characteristics and COD concentrations, and evaluate the relationships bet-ween water quality items. The physical and chemical data of total 498 reservoirs were analyzed from 1990 to 2001. Average COD, TP, TN, Chl-a, SS concentrations for the reservoirs and pollutant loadings from their watersheds were used for the analysis. It was possible that reservoirs were classified to 4 types using the relationships between the ratios of effective storage per water surface (ST/WS ratio) and COD concentrations. It is recommended that the improvement measures of polluted reservoirs should be performed as following order : integrated consolidation type (complex mechanism type) $\rightarrow$ watershed consolidation type $\rightarrow$ integrated consolidation type (external mechanism type) $\rightarrow$ in-lake consolidation type $\rightarrow$ conservation type and the depth (ST/WS ratio) of reservoir maintained over 5~6 m for water quality improvement. The decision coefficients ($r^2$) between Chl-a and other items (COD, T-P, SS, T-N) were 0.6915, 0.6732, 0.5327, 0.3352, respectively. Therefore, reservoir managers could evaluate the trophic state of reservoirs by COD concentrations.

Multiple Regression Analysis to Determine the Reservoir Classification in the Empirical Area-Reduction Method (경험적 면적감소법을 위한 저수지 분류에 관한 연구)

  • 권오훈
    • Water for future
    • /
    • v.10 no.1
    • /
    • pp.95-100
    • /
    • 1977
  • The empirical area-reduction method by W.M. Borland and C.R. Miller and its revised procedure by W.T. Moody were made of fitting the area and storage curves to the Van't Hul distributions. It should be noted that the reservoir is classified into one of the four standard types on the basis of the topographical feature of the reservoir in application of the method. In other words, this method did not take into account several considerafble factors affecting the mode of sediment deposition, but only the shape of the reservoir as a governign factor. This is why the method occasionally creates ambiguity in classification and accordingly leads to unexpected mode of deposition. This paper describes a generating an formula to decide the standard classification of four types Van's Hul distributions, taking into consideration quantitatively sediment-loss percent and capacity-inflow ratio as well as the shape of the reservoirs by multiple regression analysis using the least square method to get a better fit to the design curves. The result is expressed as $Y=-1.95+55.8X_1+0.14X_2+0.12X_3$ in which the the values of Y locate the standard type I through type IV in the range from ten to forty with the interval of ten. The regression analysis was correlated well with the standard errors of estimate of around two except for the case of the type IV. This formula does not give big difference from the Borland's work in general sityation, but it demonstrates acceptable results, giving somewhat precise replys for the specific reservoirs. Its application to the Soyang Lake, one of the largest reservoirs in the country, defined clearly the type II, while the original method located it in the boundary of the type II and type III.

  • PDF

Production and Degradation of Cyanobacterial Toxin in Water Reservoir, Lake Soyang

  • Pyo, Dong-Jin;Jin, Jung-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.800-804
    • /
    • 2007
  • Cyanobacterial toxins, microcystins are very potent hepatotoxins and their occurrence has been reported all over the world. They could threaten human health when toxic Microcystis occurs in water supply reservoirs. In this study, the effects of several environmental factors on production and degradation of toxins produced by cyanobacteria in Lake Soyang have been studied. A new rapid quantification method of microcystins using fluorescence for a detection signal and a lateral-flow-type immunochromatography as a separation system was used. Culture age, temperature, light intensity, pH, N-nutrient concentration, P-nutrient concentration, iron and zinc concentration were the most importantly examined factors. The toxin content was the highest on 17-18 days and at temperatures between 20℃ and 25℃, and at pH between 8.4 and 8.8.

Determination of Focused Control Pollutant Source by Analysis of Pollutant Delivery Characteristics in Unit Watershed Upper Paldang Lake (팔당호 상류의 단위유역별 오염물질 유출특성 분석을 통한 중점관리 오염원 선정)

  • Kim, Dong Woo;Jang, Mi Jeong;Han, Ihn Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.367-377
    • /
    • 2014
  • Paldang lake which is the most important water resource in Korea is classified as a stream type reservoir and water quality of Paldang lake can be significantly influenced by external pollutant source. So this study was aimed to determine focused control BOD and TP sources of each unit watershed upper Paldang lake through analysis of pollutant source distribution and pollutant runoff characteristics. Generated load, discharge load, delivery load and each load density of 11 unit watersheds upper Paldang lake were calculated using data of water quality and flow rate from pollutant sources and 74 small streams. As a result of generated load, discharge load and delivery load of BOD and TP from pollutant sources, the most BOD generated load was taken by livestock with 66% of total BOD discharge load and domestic had the most BOD discharge load, 42.7%. The ratio of delivery load of livestock and domestic was 36.4% and 34.3%, respectively. Livestock occupied high ratio of TP generated load, discharge load and delivery load with 82.5%, 44.4% and 46.7%, respectively. Gyeongan watershed which had high population density showed the highest BOD delivery load density of $14.6kg/km^2/d$ and the highest TP delivery load density with $1.23kg/km^2/d$ was analyzed in Cheongmi watershed including the biggest number of livestock. From these results, management of domestic sewer and livestock excrement was determined as a focused control pollutant source. And intensive management about domestic sewer in Gyeongan stream and livestock excrement in Cheongmi stream is required for water quality improvement of Paldang lake.

The riparian vegetation community models according to hydrologic and soil environments - Case of Daecheongho lake reservoirs - (수문 및 토양환경을 고려한 수변식생군락 조성 모델 - 대청호 저수지를 사례로 -)

  • Park, Miok
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.144-154
    • /
    • 2017
  • The riparian vegetation is one of corridor type ecosystems, an ecotone and able to improve the ecological soundness by structural and functional link. And they act as habitats, sources and sinks of species, conduits, filters and barriers. This study was carried out to develop the vegetation model for the fluctuation areas of lake reservoirs consider of hydrologic and soil environments according to the vegetation structure of the reference ecosystem. To develop the case study, 2 sites within 10degree slope of the Daecheong Lake were selected. The riparian vegetation models were built by the results of GIS analysis, remote satellite analysis, field survey results, consider of water level, flooded frequency, soil and topographic index, land cover or land use etc. 1) study area varied from FWL to -5m of NFWL, 2) slope 10% below, 3) vegetations flooded below 100days yearly are Salix koreensis, Salix chaenomeloides, Salix gracilistyla, 4)land cover type classified wildlife grassland, abandoned paddy field, cropland according to landuse (or landcover), 5)finally model was constructed as ecological landscape forest. The model designs were suggested by 2 types in Daecheong lake reservoir. The model for the riparian vegetation corridors could be the basic and useful data to improve the ecological and landscape properties.

Analysis of Environmental Factors of Geomorphology, Hydrology, Water Quality and Shoreline Soil in Reservoirs of Korea (우리나라 저수지에서 지형, 수문, 수질 및 호안 토양 환경요인의 분석)

  • Cho, HyunSuk;Cho, Kang-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.343-359
    • /
    • 2013
  • In order to understand shoreline environment characteristics of Korean reservoirs, the interrelationships between environmental factors of geomorphology, hydrology, water quality and shoreline soil were analyzed, and the reservoir types were classified according to their environmental characteristics in the 35 reservoirs selected by considering the purpose of dam operations and annual water-level fluctuations. Geomorphological and hydrological characteristics of reservoirs were correlated with the altitude and the size scale of reservoirs. The annual range of water level fluctuation showed a wide variation from 1 m to 27 m in the various reservoirs in Korea. The levels of eutrophication of most reservoirs were mesotrophic or eutrophic. From the result of the soil texture analysis, sand contents were high in reservoir shorelines. Range, frequency and duration of water-level fluctuation were distinctive from the primary function of reservoirs. Flood control reservoirs had a wide range with low frequency and waterpower generation reservoirs had a narrow range with high frequency in the water-level fluctuation. According to the result of CART (classification and regression tree) analysis, the water quality of reservoirs was classified by water depth, range of water-level fluctuation and altitude. The result of PCA (principal component analysis) showed that the type of reservoirs was classified by reservoir size, water-level fluctuation, water quality, soil texture and soil organic matter. In conclusion, reservoir size, the water-level fluctuation, water quality and soil characteristics might be major factors in the environment of reservoir shorelines in Korea.