• 제목/요약/키워드: lagrangian dual

검색결과 37건 처리시간 0.022초

다품종 네트워크의 효율적인 알고리즘 개발 - 정보통신 네트워크에의 적용 - (Efficient Algorithms for Multicommodity Network Flow Problems Applied to Communications Networks)

  • 윤석진;장경수
    • 정보학연구
    • /
    • 제3권2호
    • /
    • pp.73-85
    • /
    • 2000
  • 본 논문에서는 여러가지 상이한 메세지를 전송하는 정보통신 네트워크의 효율적인 해법을 개발하였다. 이 문제는 네트워크 이론에서의 전형적인 다품종 네트워크로의 전환이 가능하다. 이러한 문제는 문제의 크기에 따라 계산의 복잡도가 지수적으로 증가하는 대표적인 NP-완전문제이다. 본 논문에서 개발된 해법은 전통적인 라그랑지 이완법을 보완한 것으로 다음과 같이 구성된다. 우선 우수한 초기 실현가능해(good initial feasible solution)를 얻을 수 있는 휴리스틱 방법을 개발하고 초기 실현가능해가 얻어지면 이를 이용하여 초기 쌍대변수(이완된 제약식에 붙게되는 라그랑지 승수)를 추정한다. 대개의 경우 쌍대 변수를 임의로 0으로 설정하고 해법을 수행하는데, 이 경우 쌍대 최적해와의 차이가 많이 나게되므로 비효율이 발생할 수 있다. 쌍대 최적해를 얻은 후 원문제의 실현가능조건을 위배하는 경우에는 재할당 방법(re-allocation method)를 통해 원문제의 실현가능조건을 충족하도록 한다. 해법의 성능(효율성) 테스트 결과 저자들이 개발한 해법이 수행속도 면에서 상업용 팩키지와 기존의 효율적인 해법들에 비하여 매우 우수하다는 결과를 얻을 수 있었다. 또한 본 해법은 최적해를 보장하지 않지만 최적해와의 차이가 평균 2% 미만의 근사 최적해를 얻을 수 있었다.

  • PDF

선형계획을 위한 내부점법의 원문제-쌍대문제 로그장벽법 (A primal-dual log barrier algorithm of interior point methods for linear programming)

  • 정호원
    • 경영과학
    • /
    • 제11권3호
    • /
    • pp.1-11
    • /
    • 1994
  • Recent advances in linear programming solution methodology have focused on interior point methods. This powerful new class of methods achieves significant reductions in computer time for large linear programs and solves problems significantly larger than previously possible. These methods can be examined from points of Fiacco and McCormick's barrier method, Lagrangian duality, Newton's method, and others. This study presents a primal-dual log barrier algorithm of interior point methods for linear programming. The primal-dual log barrier method is currently the most efficient and successful variant of interior point methods. This paper also addresses a Cholesky factorization method of symmetric positive definite matrices arising in interior point methods. A special structure of the matrices, called supernode, is exploited to use computational techniques such as direct addressing and loop-unrolling. Two dense matrix handling techniques are also presented to handle dense columns of the original matrix A. The two techniques may minimize storage requirement for factor matrix L and a smaller number of arithmetic operations in the matrix L computation.

  • PDF

Proportional-Fair Downlink Resource Allocation in OFDMA-Based Relay Networks

  • Liu, Chang;Qin, Xiaowei;Zhang, Sihai;Zhou, Wuyang
    • Journal of Communications and Networks
    • /
    • 제13권6호
    • /
    • pp.633-638
    • /
    • 2011
  • In this paper, we consider resource allocation with proportional fairness in the downlink orthogonal frequency division multiple access relay networks, in which relay nodes operate in decode-and-forward mode. A joint optimization problem is formulated for relay selection, subcarrier assignment and power allocation. Since the formulated primal problem is nondeterministic polynomial time-complete, we make continuous relaxation and solve the dual problem by Lagrangian dual decomposition method. A near-optimal solution is obtained using Karush-Kuhn-Tucker conditions. Simulation results show that the proposed algorithm provides superior system throughput and much better fairness among users comparing with a heuristic algorithm.

A DUAL ITERATIVE SUBSTRUCTURING METHOD WITH A SMALL PENALTY PARAMETER

  • Lee, Chang-Ock;Park, Eun-Hee
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.461-477
    • /
    • 2017
  • A dual substructuring method with a penalty term was introduced in the previous works by the authors, which is a variant of the FETI-DP method. The proposed method imposes the continuity not only by using Lagrange multipliers but also by adding a penalty term which consists of a positive penalty parameter ${\eta}$ and a measure of the jump across the interface. Due to the penalty term, the proposed iterative method has a better convergence property than the standard FETI-DP method in the sense that the condition number of the resulting dual problem is bounded by a constant independent of the subdomain size and the mesh size. In this paper, a further study for a dual iterative substructuring method with a penalty term is discussed in terms of its convergence analysis. We provide an improved estimate of the condition number which shows the relationship between the condition number and ${\eta}$ as well as a close spectral connection of the proposed method with the FETI-DP method. As a result, a choice of a moderately small penalty parameter is guaranteed.

INDEFINITE STOCHASTIC OPTIMAL LQR CONTROL WITH CROSS TERM UNDER IQ CONSTRAINTS

  • Luo, Cheng-Xin;Feng, En-Min
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.185-200
    • /
    • 2004
  • A stochastic optimal LQR control problem under some integral quadratic (IQ) constraints is studied, with cross terms in both the cost and the constraint functionals, allowing all the control weighting matrices being indefinite. Sufficient conditions for the well-posedness of this problem are given. When these conditions are satisfied, the optimal control is explicitly derived via dual theory.

EQPS를 이용한 복합장갑의 해석 및 최적설계 (The analysis and optimization of dual armor plate considering EQPS)

  • 박명수;유정훈;정동택
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.111-118
    • /
    • 2004
  • For the precise analysis of high velocity impact problem though FEM with element erosive method, the adequate mesh size and critical equivalent plastic strain(EQPS) is chosen prior to the simulation. In this research, it is strongly required from a standpoint that critical EQPS is used to decide whether perforation occurs or not. The optimization of dual armor plate consisting of 4340 steel and 2024 aluminium against a die steel sphere with high-velocity has been suggested using Lagrangian explicit time-integration code, NET2D. The response surface method based on the design of experiment is utilized for the size optimization. The optimized thickness of each layer, in which perforation does not occur, the strength of multi-layer is maximized and total weight is minimized, is obtained at a constant velocity of a pellet with a designated total thickness.

  • PDF

국부 및 혼합 Lagrange 승수법을 이용한 영역분할 기반 유한요소 구조해석 기법 개발 (Development of Finite Element Domain Decomposition Method Using Local and Mixed Lagrange Multipliers)

  • 곽준영;조해성;신상준;올리비에 보쇼
    • 한국전산구조공학회논문집
    • /
    • 제25권6호
    • /
    • pp.469-476
    • /
    • 2012
  • 본 논문에서는 대규모 구조해석을 위하여 국부(local) 및 전역-국부 혼합(mixed) Lagrange 승수(Lagrange multiplier)를 이용한 새로운 유한요소 영역분할 기법을 제시한다. 제시되는 FETI 알고리즘은 계산 효율성을 향상시키기 위하여 기존의 FETI 기법들에서 사용되어 온 전통적인 Lagrange 승수법과는 달리, 국부 및 전역-국부 혼합 Lagrange 승수를 도입하고 ALF(Augmented Lagrangian Formulation)과의 결합을 유도하여 공유면 문제(interface problem)의 해의 수렴성을 향상 시켰다. 추가적으로, 몇 가지 수치예제 계산을 통해 기존의 FETI-DP 기법과 비교하여 유연도 행렬의 조건수, 계산 시간 그리고 메모리 사용량에 대한 계산결과를 제시하였다.

Domain Decomposition Approach Applied for Two- and Three-dimensional Problems via Direct Solution Methodology

  • Kwak, Jun Young;Cho, Haeseong;Chun, Tae Young;Shin, SangJoon;Bauchau, Olivier A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.177-189
    • /
    • 2015
  • This paper presents an all-direct domain decomposition approach for large-scale structural analysis. The proposed approach achieves computational robustness and efficiency by enforcing the compatibility of the displacement field across the sub-domain boundaries via local Lagrange multipliers and augmented Lagrangian formulation (ALF). The proposed domain decomposition approach was compared to the existing FETI approach in terms of the computational time and memory usage. The parallel implementation of the proposed algorithm was described in detail. Finally, a preliminary validation was attempted for the proposed approach, and the numerical results of two- and three-dimensional problems were compared to those obtained through a dual-primal FETI approach. The results indicate an improvement in the performance as a result of the implementing the proposed approach.

확장된 발전시스템에서 지식기반 해법을 이용한 단기운영계획 수립에 관한 연구 (Knowledge-based Approach for Solving Short-term Power Scheduling in Extended Power Systems)

  • 김철수
    • 한국경영과학회지
    • /
    • 제23권2호
    • /
    • pp.187-200
    • /
    • 1998
  • This paper presents an original approach for solving short-term power scheduling in extended power system with two fuels in a unit and a limited fuel using Lagrangian relaxations. The underlying model incorporates the full set of costs and constraints including setup, production, ramping, and operational status, and takes the form of a mixed integer nonlinear control problem. Moreover, the mathematical model developed includes two fuels in a unit and a limited fuel, regulation reserve requirements of prespecified group of units. Lagrangian relaxation is used to disaggregate the model by generator into separate subproblems which are then solved with a nested dynamic program including empirical knowledges. The strength of the methodology lies partially in its ability to construct good feasible solutions from information provided by the dual. Thus, the need for branch-and-bound is eliminated. In addition, the inclusion of two fuels in a unit and a limited fuel provides new insight into the limitations of current techniques. Computational experience with the proposed algorithm indicates that Problems containing up to 23 units including 8 unit used two fuels and 24 time periods can be readily solved in reasonable times. Duality gaps of less than 4% were achieved.

  • PDF

Buffer Scheme Optimization of Epidemic Routing in Delay Tolerant Networks

  • Shen, Jian;Moh, Sangman;Chung, Ilyong;Sun, Xingming
    • Journal of Communications and Networks
    • /
    • 제16권6호
    • /
    • pp.656-666
    • /
    • 2014
  • In delay tolerant networks (DTNs), delay is inevitable; thus, making better use of buffer space to maximize the packet delivery rate is more important than delay reduction. In DTNs, epidemic routing is a well-known routing protocol. However, epidemic routing is very sensitive to buffer size. Once the buffer size in nodes is insufficient, the performance of epidemic routing will be drastically reduced. In this paper, we propose a buffer scheme to optimize the performance of epidemic routing on the basis of the Lagrangian and dual problem models. By using the proposed optimal buffer scheme, the packet delivery rate in epidemic routing is considerably improved. Our simulation results show that epidemic routing with the proposed optimal buffer scheme outperforms the original epidemic routing in terms of packet delivery rate and average end-to-end delay. It is worth noting that the improved epidemic routing needs much less buffer size compared to that of the original epidemic routing for ensuring the same packet delivery rate. In particular, even though the buffer size is very small (e.g., 50), the packet delivery rate in epidemic routing with the proposed optimal buffer scheme is still 95.8%, which can satisfy general communication demand.