• Title/Summary/Keyword: lactose fermentation

Search Result 141, Processing Time 0.027 seconds

Study on the Fermentation Conditions Influencing the Production of Vitamin $B_{12}$ by Propionibacterium shermanii (Propionibacterium shermanii에 의한 Vitamin $B_{12}$생성에 영향을 미치는 발효조건에 관한 연구)

  • 김지영;김공환구양모
    • KSBB Journal
    • /
    • v.7 no.2
    • /
    • pp.126-131
    • /
    • 1992
  • The effects of fermentation conditions and medium compositions on the production of vitamin $B_{12}$ by Propionibacterium shermanii IFO 1239 were studied. Changes from an anaerobic to aerobic condition and a complex to synthetic medium after 48hr resulted in a 100% increase in vitamin $B_{12}$ production compared to an anaerobic culture alone. Glucose, fructose and lactose were found to be equally good as a carbon source for vitamin $B_{12}$ production. Addition of succinate and malate to the synthetic medium with glucose as a carbon source led to an increase in vitamin $B_{12}$ production by 33.6% and 17.2% respectively.

  • PDF

Biopolyrner Production of Zoogloea ramigera in Batch, Fed-Batch and Continuous Culture Processes (Zoogloea ramigera의 회분식, 유가배양, 연속배양에 의한 생물고분자 생산)

  • 안대희;정윤철
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.196-202
    • /
    • 1992
  • Zoogloea ramigera 115 was selected for the production of viscous microbial polysaccharide for bioflocculants usage. Batch, fed-batch, and continuous culture processes were examined with regard to the high biopolymer production. Several carbon sources were tested, including glucose, lactose, molasses, and cheese whey. The C/N ratio of 90 was most effective for biopolymer production from glucose, while the C/N ratios of 30 for lactose and 60 for both molasses and cheese whey substrate gave a maximum production. Fed batch culture proved more effective to increase final biopolymer concentration than batch culture. Continuous fermentation with two stages modifying C/N ratio increased the productivity. The production rates were a maximum at dilution rate of 0.048 $hr^{-1}$ for molasses and at 0.096 $hr^{-1}$for cheese whey.

  • PDF

The Production of 1,4-Androstadiene-3,17-Dionefrom Sterols by Brevibacterium erythrogenes (Brevibacterium erythrogenes에 의한 스테롤로부터 1,4-Androstadiene-3,17-dione 생성)

  • 이은아;이강만
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.411-416
    • /
    • 1990
  • Microbiological conversion of sterols to 17-ketosteroids has been recongnized as a source for commerical preparation of steroidal drugs. For the purpose of strain development, we isolated microorganisms through enrichment culture method and identified an isolate strain. The strain was closely related to Brevibacterium ergthrogenes. The optimal conditions for 1, 4-androstadiene-3, 17-dione (ADD) formation were as follows; pH 7.4, lactose 0.2%, beef extract 0.2%, bentonite 0.5% in the chlolesterol fermentation medium. Maximum production was obtained with the addition of $\alpha$, $\alpha$'-dipyridyl (1 mM, final conc.) at 17-20 hours after incubation.

  • PDF

Enhanced Production of Galactooligosaccharides Enriched Skim Milk and Applied to Potentially Synbiotic Fermented Milk with Lactobacillus rhamnosus 4B15

  • Oh, Nam Su;Kim, Kyeongmu;Oh, Sangnam;Kim, Younghoon
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.725-741
    • /
    • 2019
  • In the current study, we first investigated a method for directly transforming lactose into galacto-oligosaccharides (GOS) for manufacturing low-lactose and GOS-enriched skim milk (GSM) and then evaluated its prebiotic potential by inoculating five strains of Bifidobacterium spp. In addition, fermented GSM (FGSM) was prepared using a potentially probiotic Lactobacillus strain and its fermentation characteristics and antioxidant capacities were determined. We found that GOS in GSM were metabolized by all five Bifidobacterium strains after incubation and promoted their growth. The levels of antioxidant activities including radical scavenging activities and 3-hydroxy-3-methylglutaryl-CoA reductase inhibition rate in GSM were significantly increased by fermentation with the probiotic Lactobacillus strain. Moreover, thirty-nine featured peptides in FGSM was detected. In particular, six peptides derived from ${\beta}$-casein, two peptides originated from ${\alpha}s_1$-casein and ${\kappa}$-casein were newly identified, respectively. Our findings indicate that GSM can potentially be used as a prebiotic substrate and FGSM can potentially prevent oxidative stress during the production of synbiotic fermented milk in the food industry.

Effects of Sugars on Kimchi Fermentation and on the Stability of Ascorbic Acid (당류(糖類)가 김치의 발효(發酵)와 Ascorbic Acid의 안정도(安定度)에 미치는 영향(影響))

  • Jung, H.S.;Ko, Y.T.;Lim, S.J.
    • Journal of Nutrition and Health
    • /
    • v.18 no.1
    • /
    • pp.36-45
    • /
    • 1985
  • The effects of glucose, lactose, sucrose, and potato starch on kimchi fermentation and on the stability of ascorbic acid were investigated at $7^{\circ}C$. Kimchi samples with the sugars showed the higher PH and lower total acidity until 9th day of fermentation than kimchi without sugar. Changes in the pH and total acidity were not significantly different among the samples after the 12th day. Addition of the sugars did not show any effects on the growth of lactobacilli through the fermentation period. The amounts and changes in ascorbic acid content during the fermentation did not differ significantly between the control and sugar - added samples. Ascorbic acid in most samples decreased continuously by the 9th day of fermentation. After then the vitamin increased in all the samples and then again decreased slowly after 18th day. From the multiple comparison tests the 10- panel members indicated the better flavor of sugar - added samples than control sample. However the differences in flavor were not significant.

  • PDF

Optimization of Extracellular Production of Recombinant Human Bone Morphogenetic Protein-7 (rhBMP-7) with Bacillus subtilis

  • Kim, Chun-Kwang;Rhee, Jong Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.188-196
    • /
    • 2014
  • Extracellular production of recombinant human bone morphogenetic protein-7 (rhBMP-7) was carried out through the fermentation of Bacillus subtilis. Three significant fermentation conditions and medium components were selected and optimized to enhance the rhBMP-7 production by using the response surface methodology (RSM). The optimum values of the three variables for the maximum extracellular production of rhBMP-7 were found to be 2.93 g/l starch, 5.18 g/l lactose, and a fermentation time of 34.57 h. The statistical optimization model was validated with a few fermentations of B. subtilis in shake flasks under optimized and unoptimized conditions. A 3-L jar fermenter using the shake-flask optimized conditions resulted in a higher production (413 pg/ml of culture medium) of rhBMP-7 than in a shake flask (289.1 pg/ml), which could be attributed to the pH being controlled at 6.0 and constant agitation of 400 rpm with aeration of 1 vvm.

Effects of Carbon Sources and Other Process Variables in Fed-Batch Fermentation of Penicillin (페니실린 발효 공정에 있어서 탄소원 및 다른 공정변수가 미치는 영향)

  • 이진선;신규철;양호석;유두영
    • Korean Journal of Microbiology
    • /
    • v.16 no.1
    • /
    • pp.21-29
    • /
    • 1978
  • In the fed-batch fermentation of penicillin specific uptake rates of carbon source and ammonia nitrogen, and specific production rate of penicillin as the most important process variables were evaluated over the fermentation course and their effects on the productivity studied. As the results, glucose and lactose each as a major carbon source showed the following values, respectively ; the specific uptake rates of 47-93 mg hexose per gm-DCW per he and 37-44 mg hexose per gm-DCW per hr, the specific uptake rates of 4.6-6.8 mg $NH_3-N$ per gm-DCW per hr, and 1.2 mg $NH_3-N$ per gm-DCW per he and the specific production rates of 32-42 arbitrary unit per gm-DCW per hr and 46-50 arbitrary unit per gm-DCW per hr. The productivity of penicillin could be improved by controlling the feed rates of glucose and ammonia nitrogen to meet the uptake rates.

  • PDF

Effects of Temperature on the Changes of Enzymatic Activities and Metabolite during Wheat nuruk Fermentation (밀누룩 발효기간 동안 효소와 대사체 변화에 대한 온도의 영향)

  • Lee, Se Hee;Baek, Seong Yeol;Kang, Ji-Eun;Jeon, Che Ok;Kim, Dae-Hyuk;Kim, Myoung-Dong;Yeo, Soo-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.378-384
    • /
    • 2015
  • Nuruk is a fermentation agent, which has been used for the production of traditional Korean alcoholic beverages. The objective of this study was to investigate the effects of temperature on nuruk fermentation. One wheat nuruk sample was fermented at $36^{\circ}C$ for 30 days (TN-A) and another at $45^{\circ}C$ for 10 days followed by $36^{\circ}C$ for 20 days (TN-B). The activities of ${\alpha}$-amylase, glucoamylase, and acidic protease, as well as metabolite contents were measured. Initially, the enzymatic activities increased rapidly regardless of the fermentation temperature. After 3 days of fermentation, the enzymatic activities were maintained in TN-A, but gradually decreased in TN-B until the end of fermentation process. Metabolite analysis using $^1H$-NMR showed that the levels of glucose, glycerol, fructose, mannitol, and lactose initially increased quickly and then decreased in TN-A. However, they initially decreased and then were maintained over the fermentation period in TN-B. The contents of glycine, proline, and serine were higher in TN-A than in TN-B. This study suggests that a constant temperature of approximately $36^{\circ}C$ is appropriate for achieving high amylolytic and proteolytic activities in the production of wheat nuruk.

Effects of Temperature and pH on the Production of Citric Acid from Cheese Whey by Aspergillus niger (Aspergillus niger를 이용한 유청으로부터 구연산의 생산에 있어서 온도와 pH의 영향)

  • Lee, Jung-Hoon;Yun, Hyun-Shik
    • The Korean Journal of Mycology
    • /
    • v.27 no.6 s.93
    • /
    • pp.383-385
    • /
    • 1999
  • Effects of temperature and initial pH of the medium on production of citric acid from cheese whey permeate by Aspergillus niger were investigated. A. niger was cultivated at four different temperatures (27, 30, 33, $36^{\circ}C$) and four different pHs (2, 3, 4, 5) for 15 days. During the fermentation the concentrations of lactose and citric acid in the culture broth were measured. The maximum production of citric acid which was 33.9 g/l (68.26% yield based on lactose utilized) was obtained at $33^{\circ}C$ and pH 3. The production of citric acid was not much affected by shaking speed. However, the shaking speed was found to influence the form of pellets during cell growth.

  • PDF

Alcohol Fermentation of Cheese Whey by Kluyveromyces marxianus and Lactic Acid Bacteria (Kluyveromyces marxianus와 젖산균의 혼합배양에 의한 치즈 유청의 알코올 발효)

  • Shim, Young-Sup;Kim, Jae-Won;Yoon, Sung-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.161-167
    • /
    • 1998
  • Whey is by-product from natural cheese manufacturing process. For alcoholic fermentation, the initial lactose content and pH were adjusted to 4.5% and 4.2, respectively. Two strains of yeasts (Kluyveromyces marxianus, Saccharomyces cerevisiae) and seven strains of lactic acid bacteria (Lactobacillus brevis, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus lactis, Leuconostoc cremoris, Lactococcus lactis and Streptococcus thermophilus) were examined for their alcohol production and sensory acceptability. Ethanol content in the whey fermented by lactose-fermenting K. marxianus was 2.8% at 4th day of incubation and that fermented by nonlactose fermenting S. cerevisiae was 0.2%. In case of mixed fermentation with yeasts and tactic acid bacteria (LAB being inoculated at 0 hr), the maximum ethanol production was obtained in the sample inoculated at 16 hr by s. cerevisiae, and in the sample inoculated at 24 hr by K. marxianus. The optimum temperature was $37^{\circ}C$ for alcohol production under static condition. The production of $CO_2$ gas was higher in the whey fermented by K. marxianus (1.88%) than by S. cerevisiae (0.04%). The titratable acidity of the whey gradually increased with fermentation time and its content was 0.39% at 4th day of fermentation by K. marxianus and 0.52% by S. cerevisiae. Among seven strain of latic acid bacteria tested, Lactococcus lactis exerted synergistic effect for acid production with K. marxianus. Therefore, overall results suggestd that the combination of Lactococcus lactis and K. marxianus was best choice in fermenting cheese whey for edible purpose.

  • PDF