• Title/Summary/Keyword: lactic bacteria strain

Search Result 392, Processing Time 0.027 seconds

Characterization of Antimicrobial Substance Produced by Lactobacillus paraplantarum KNUC25 Isolated from Kimchi (김치로부터 분리된 Lactobacillus paraplantarum KNUC25가 만드는 항균 물질의 특성)

  • Kim, Ma-Rie;Lee, Su-Jin;Seul, Keyung-Jo;Park, Yu-Mi;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.1
    • /
    • pp.24-32
    • /
    • 2009
  • The KNUC25 strain isolated from over-fermented whole Chinese cabbage kimchi was examined for its physiological characteristics using API 50 CHL system assay and identified as Lactobacillus paraplantarum by analysis of whole-cell protein SDS-PAGE pattern assay and similarity of 16S rDNA sequence. L. paraplantarum KNUC25 had a broad antimicrobial activity spectrum from Gram positive to Gram negative bacteria. Scanning electron micrograph analysis showed that KNUC25 might attack to cell surface of indicator cells and destruction can lead to inhibition of the cell growth. The antimicrobial substance of the KNUC25 strain was stable to various degrading enzymes and at high temperature and not a plasmid-born matter. Resistance to proteolytic enzymes showed that an antimicrobial activity of KNUC25 might not be caused by proteinous substance. Maximum production of antimicrobial substance was the exponential growth phase at $30^{\circ}C$.

Changes in Cell Membrane Fatty Acid Composition of Streptococcus thermophilus in Response to Gradually Increasing Heat Temperature

  • Min, Bonggyu;Kim, Kkotnim;Li, Vladimir;Cho, Seoae;Kim, Heebal
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.739-748
    • /
    • 2020
  • In this study, a method of heat adaptation was implemented in an attempt to increase the upper thermal threshold of two Streptococcus thermophilus found in South Korea and identified the alterations in membrane fatty acid composition to adaptive response to heat. In order to develop heat tolerant lactic acid bacteria, heat treatment was continuously applied to bacteria by increasing temperature from 60℃ until the point that no surviving cell was detected. Our results indicated significant increase in heat tolerance of heat-adapted strains compared to the wild type (WT) strains. In particular, the survival ratio of basically low heat-tolerant strain increased even more. In addition, the strains with improved heat tolerance acquired cross protection, which improved their survival ratio in acid, bile salts and osmotic conditions. A relation between heat tolerance and membrane fatty acid composition was identified. As a result of heat adaptation, the ratio of unsaturated to saturated fatty acids (UFA/SFA) and C18:1 relative concentration were decreased. C6:0 in only heat-adapted strains and C22:0 in only the naturally high heat tolerant strain were detected. These results support the hypothesis, that the consequent increase of SFA ratio is a cellular response to environmental stresses such as high temperatures, and it is able to protect the cells from acid, bile salts and osmotic conditions via cross protection. This study demonstrated that the increase in heat tolerance can be utilized as a mean to improve bacterial tolerance against various environmental stresses.

Functional Characterization of Lactobacillus sakei JK-17 Isolated from Long-term Fermented Kimchi, Muk Eun Ji (장기간 발효 김치인 묵은지에서 분리한 Lactobacillus sakei JK-17의 기능성 조사)

  • Kim, Dong-Seon;Cho, Hyeong-Woo;Kim, Dae-Han;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.28 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • The purpose of this work was to investigate the several functional characteristics of Lactobacillus sakei JK-17 isolated from long-term fermented kimchi, Muk Eun Ji. Initially, phylogenetic analysis using 16S rRNA sequencing was performed to identify the isolate JK-17, and the strain could be assigned to Lactobacillus sakei and designated as L. sakei JK-17. The strain was registered in GenBank as [JX841311]. The changes of bacterial growth and residual organic acids were monitored and HPLC was used to measure quantitatively two organic acids, lactic acid and acetic acid, produced in the culture during 84 hours of incubation. During the incubation period, several functional characteristics of L. sakei JK-17 were examined. L. sakei JK-17 culture depleted nitrite concentration 94.75%. Antioxidant activity of cultural supernatants of L. sakei JK-17 was approx. 53.8%, and ${\beta}$-galactosidase activities were 0.243 units/mL at pH 7.0 and 0.387 units/mL at pH 4.1, respectively. The antibacterial activities against food-poisoning causing bacteria were examined with 20-fold concentrated culture supernatants from L. sakei JK-17 and the antibacterial effects were clearly observed against all bacteria tested in this work.

Rapid in vivo Colonization Screening of Probiotic Bacteria Isolated from Human Infants using Caenorhabditis elegans Surrogate Host (Caenorhabditis elegans 생체대체모델을 이용한 한국 영유아분변 유래 프로바이오틱스 균주의 in vivo 장 우점능 검토)

  • Park, Miri;Jeong, Eun-Seon;Oh, Sangnam;Song, Min-Ho;Doo, Jae-Kyun;Jeong, Yong-Seob;Moon, Yong-Il;Kim, Younghoon
    • Food Science of Animal Resources
    • /
    • v.33 no.4
    • /
    • pp.522-530
    • /
    • 2013
  • The ability of probiotics to adhere to the intestinal epithelium likely plays an important role in their colonization of the gastrointestinal tract. Here, we performed high-throughput screening (HTS) for suitable characteristics of potential probiotic bacteria using attachment and colonization ability through a C. elegans surrogate in vivo model. A total of 100 strains of lactic acid bacteria (LAB) isolated from infant feces were subjected to the colonization assay using C. elegans intestine. Based on colonization ability, we showed that nine isolates have a high attachment ability during whole experimental periods (up to 168 h), compared to Lactobacillus rhamnosus strain GG as a control. Also, through the use of an in vitro cell attachment model, nine isolates revealed highly binding activity to the mucus layer. Next, the selected 9 isolates were assayed for their survival ability when exposed to acidic and bile conditions as well as cholesterol reduction and the utilization of prebiotic substrates. As a result, the isolated nine strains were determined to be highly resistant to acid and bile conditions. In addition, they have significant activity for the reduction of cholesterol and utilization of several prebiotic substrates as a carbon source. Finally, the selected nine strains were identified by either L. rhamnosus or L. plantarum (4 strains for L. rhamnosus and 5 strains for L. plantarum, respectively). Taken together, we propose that the direct colonization of probiotics using C. elegans may be applicable to the rapid screening of valuable probiotic strains in vivo.

Quorum-Sensing Mechanisms in Bacterial Communities and Their Potential Applications (세균의 의사 소통(Quorum-Sensing) 기구와 그 잠재적 응용성)

  • Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.26 no.3
    • /
    • pp.402-409
    • /
    • 2006
  • Although microorganisms are, in fact, the most diverse and abundant type of organism on Earth, the ecological functions of microbial populations remains poorly understood. A variety of bacteria including marine Vibrios encounter numerous ecological challenges, such as UV light, predation, competition, and seasonal variations in seawater including pH, salinity, nutrient levels, temperature and so forth. In order to survive and proliferate under variable conditions, they have to develop elaborate means of communication to meet the challenges to which they are exposed. In bacteria, a range of biological functions have recently been found to be regulated by a population density-dependent cell-cell signaling mechanism known as quorum-sensing (QS). In other words, bacterial cells sense population density by monitoring the presence of self-produced extracellular autoinducers (AI). N-acylhomoserine lactone (AHL)-dependent quorum-sensing was first discovered in two luminescent marine bacteria, Vibrio fischeri and Vibrio harveyi. The LuxI/R system of V. fischeriis the paradigm of Gram-negative quorum-sensing systems. At high population density, the accumulated signalstrigger the expression of target genes and thereby initiate a new set of biological activities. Several QS systems have been identified so far. Among them, an AHL-dependent QS system has been found to control biofilm formation in several bacterial species, including Pseudomonas aeruginosa, Aeromonas hydrophila, Burkholderia cepacia, and Serratia liquefaciens. Bacterial biofilm is a structured community of bacterial cells enclosed in a self-produced polymeric matrix that adheres to an inert or living surface. Extracellular signal molecules have been implicated in biofilm formation. Agrobacterium tumefaciens strain NT1(traR, tra::lacZ749) and Chromobacterium violaceum strain CV026 are used as biosensors to detect AHL signals. Quorum sensing in lactic acid bacteria involves peptides that are directly sensed by membrane-located histidine kinases, after which the signal is transmitted to an intracellular regulator. In the nisin autoregulation process in Lactococcus lactis, the NisK protein acts as the sensor for nisin, and NisR protein as the response regulator activatingthe transcription of target genes. For control over growth and survival in bacterial communities, various strategies need to be developed by which receptors of the signal molecules are interfered with or the synthesis and release of the molecules is controlled. However, much is still unknown about the metabolic processes involved in such signal transduction and whether or not various foods and food ingredients may affect communication between spoilage or pathogenic bacteria. In five to ten years, we will be able to discover new signal molecules, some of which may have applications in food preservation to inhibit the growth of pathogens on foods.

Production of γ-amino Butyric Acid by Lactic Acid Bacteria in Skim Milk (탈지방우유에서 가바생성 유산균 배양을 통한 가바생성 연구)

  • Cha, Jin Young;Kim, Young Rok;Beck, Bo Ram;Park, Ji Hun;Hwang, Cher Won;Do, Hyung Ki
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.223-228
    • /
    • 2018
  • Lactic acid bacteria were isolated from a variety of fermented seafoods and sea creatures from the East Sea Rim, Korea and were screened for ${\gamma}-amino$ butyric acid-producing (GABA) activity. Through a 16S rRNA sequence analysis, the bacteria of interest, which were GABA-positive on the thin-layer chromatography analysis, were recognized as three isolates of Lactobacillus (Lb.) brevis and one isolate of Lactococcus (Lc.) lactis. Lb. brevis FSFL0004 and FSFL0005 were isolated from fermented anglerfish and Lb. brevis FSFL0036 was derived from salted cutlass fish. The Lc. lactis strain FGL0007 was isolated from the gut of a brown sole flounder. According to HPLC analysis, the GABA contents produced by FSFL0004, FSFL0005, FSFL0036 and FGL0007 were equivalent to $10,754.37{\mu}g/ml$, $13,082.79{\mu}g/ml$, $12,290.19{\mu}g/ml$, and $45.07{\mu}g/ml$ respectively in 1% monosodium glutamate-supplemented methionyl-tRNA synthetase (MRS) broth. The four strains were inoculated in skim milk with 1% monosodium glutamate to commercialize the strains as starter cultures for GABA-enriched dairy products, and TLC results displayed the production of ${\gamma}-amino$ butyric acid by all four strains in the adaptation media. Lc. lactis FGL0007 demonstrated the greatest GABA production ($431.42{\mu}g/ml$) by HPLC analysis. The GABA production by lactic acid bacteria strains in the skim milk demonstrated in the present study may be helpful for the production of GABA-enriched dairy products.

Comparative Genome Analysis and Evaluation of Probiotic Characteristics of Lactobacillus plantarum Strain JDFM LP11

  • Heo, Jaeyoung;Shin, Donghyun;Chang, Sung Yong;Bogere, Paul;Park, Mi Ri;Ryu, Sangdon;Lee, Woong Ji;Yun, Bohyun;Lee, Hak Kyo;Kim, Younghoon;Oh, Sangnam
    • Food Science of Animal Resources
    • /
    • v.38 no.5
    • /
    • pp.878-888
    • /
    • 2018
  • In the current study, the probiotic potential of approximately 250 strains of lactic acid bacteria (LAB) isolated from piglet fecal samples were investigated; among them Lactobacillus plantarum strain JDFM LP11, which possesses significant probiotic potential, with enhanced acid/bile tolerance, attachment to porcine intestinal epithelial cells (IPEC-J2), and antimicrobial activity. The genetic characteristics of strain JDFM LP11 were explored by performing whole genome sequencing (WGS) using a PacBio system. The circular draft genome have a total length of 3,206,883 bp and a total of 3,021 coding sequences were identified. Phylogenetically, three genes, possibly related to survival and metabolic activity in the porcine host, were identified. These genes encode p60, lichenan permease IIC component, and protein TsgA, which are a putative endopeptidase, a component of the phosphotransferase system (PTS), and a major facilitator in the gut environment, respectively. Our findings suggest that understanding the functional and genetic characteristics of L. plantarum strain JDFM LP11, with its candidate genes for gut health, could provide new opportunities and insights into applications in the animal food and feed additive industries.

Lactobacillus casei strain C1 attenuates vascular changes in spontaneously hypertensive rats

  • Yap, Wei Boon;Ahmad, Faisal Malau;Lim, Yi Cheng;Zainalabidin, Satirah
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.621-628
    • /
    • 2016
  • Hypertension can be caused by various factors while the predominant causes include increase in body fluid volume and resistance in the circulatory system that elevate the blood pressure. Consumption of probiotics has been proven to attenuate hypertension; however, the effect is much strain-dependent. In this study, a newly isolated Lactobacillus casei (Lb. casei ) strain C1 was investigated for its antihypertensive properties in spontaneously hypertensive rats (SHR). Lactic acid bacteria (LAB) suspension of 11 log colony-forming unit (CFU) was given to SHR (SHR+LAB, n=8), and phosphate buffer saline (PBS) was given as a control in SHR (SHR, n=8) and in Wistar rats as sham (WIS, n=8). The treatment was given via oral gavage for 8 weeks. The results showed that the weekly systolic blood pressure (SBP), mean arterial pressure (MAP), diastolic blood pressure (DBP) and aortic reactivity function were remarkably improved after 8 weeks of bacterial administration in SHR+LAB. These effects were mostly attributed by restoration of wall tension and tensile stress following the bacterial treatment. Although not statistically significant, the level of malondialdehye (MDA) in SHR+LAB serum was found declining. Increased levels of glutathione (GSH) and nitric oxide (NO) in SHR+LAB serum suggested that the bacterium exerted vascular protection through antioxidative functions and relatively high NO level that induced vasodilation. Collectively, Lb. casei strain C1 is a promising alternative for hypertension improvement.

Development of Bile Salt-Resistant Leuconostoc citreum by Expression of Bile Salt Hydrolase Gene

  • Cho, Seung Kee;Lee, Soo Jin;Shin, So-Yeon;Moon, Jin Seok;Li, Ling;Joo, Wooha;Kang, Dae-Kyung;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2100-2105
    • /
    • 2015
  • Probiotic bacteria must have not only tolerance against bile salt but also no genes for antibiotic resistance. Leuconostoc citreum is a dominant lactic acid bacterium in various fermented foods, but it is not regarded as a probiotic because it lacks bile salt resistance. Therefore, we aimed to construct a bile salt-resistant L. citreum strain by transforming it with a bile salt hydrolase gene (bsh). We obtained the 1,001 bp bsh gene from the chromosomal DNA of Lactobacillus plantarum and subcloned it into the pCB4170 vector under a constitutive P710 promoter. The resulting vector, pCB4170BSH was transformed into L. citreum CB2567 by electroporation, and bile salt-resistant transformants were selected. Upon incubation with glycodeoxycholic acid sodium salt (GDCA), the L. citreum transformants grew and formed colonies, successfully transcribed the bsh gene, and expressed the BSH enzyme. The recombinant strain grew in up to 0.3% (w/v) GDCA, conditions unsuitable for the host strain. In in vitro digestion conditions of 10 mM bile salt, the transformant was over 67.6% viable, whereas only 0.8% of the host strain survived.

Enzymatic Transformation of Ginsenoside Rb1 by Lactobacillus pentosus Strain 6105 from Kimchi

  • Kim, Se-Hwa;Min, Jin-Woo;Quan, Lin-Hu;Lee, Sung-Young;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.291-297
    • /
    • 2012
  • Ginsenoside (ginseng saponin), the principal component of ginseng, is responsible for the pharmacological and biological activities of ginseng. We isolated lactic acid bacteria from Kimchi using esculin agar, to produce ${\beta}$-glucosidase. We focused on the bio-transformation of ginsenoside. Phylogenetic analysis was performed by comparing the 16S rRNA sequences. We identified the strain as Lactobacillus (strain 6105). In order to determine the optimal conditions for enzyme activity, the crude enzyme was incubated with 1 mM ginsenoside Rb1 to catalyse the reaction. A carbon substrate, such as cellobiose, lactose, and sucrose, resulted in the highest yields of ${\beta}$-glucosidase activity. Biotransformations of ginsenoside Rb1 were analyzed using TLC and HPLC. Our results confirmed that the microbial enzyme of strain 6105 significantly transformed ginsenoside as follows: Rb1${\rightarrow}$gypenoside XVII, Rd${\rightarrow}$F2 into compound K. Our results indicate that this is the best possible way to obtain specific ginsenosides using microbial enzymes from 6105 culture.