• Title/Summary/Keyword: lactic acid microbial

Search Result 475, Processing Time 0.026 seconds

An Investigation of the Solubilization of Primary Sewage Sludge using Lactic Acid Bacteria Cultured in a Glucose and Yeast Extract Medium (Glucose와 Yeast Extract를 이용하여 배양된 유산균을 이용한 하수 일차 슬러지의 가용화)

  • Lee, Sang Min;Choi, Han Na;Shin, Jung Hun;Lee, Eun Young
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.424-429
    • /
    • 2012
  • The intention of this research was to investigate the solubilization of primary sewage sludge using lactic acid bacteria cultured in a glucose and yeast extract medium. Glucose as the carbon source and yeast extract as the source of nitrogen were chosen as an economic medium with the potential for the mass production of lactic acid bacteria. The optimal concentrations of the medium were 3% (w/v) glucose and 2% (w/v) yeast extract. In this study, in order to improve field applications for the solubilization of sludge at sewage treatment plants, a powdered form of lactic acid bacteria was produced. The optimal inoculum of the powder for the maximum efficiency of solubilization was 1% (w/v). In that condition, the SCOD value increased from 8600 (mg/L) at the beginning of experiment to 10290 (mg/L) at 96 h, with the highest solubilization rate (20.6% DDCOD) and 11.2% (SCOD). Also, the TVFAs of the lactic acid bacteria inoculation group were produced more than that of the control group. In particular, acetic acid was produced 5 times more in the experimental group than in the control group. In this research, the potential of lactic acid bacteria in the pretreatment of primary sewage sludge as a solubilizer, and as an energy source producer for microbial fuel cells was revealed.

Effect of Irradiated Red Pepper Powder on Kimchi Quality during Fermentation

  • Lee, Seung-Cheol
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.218-221
    • /
    • 2004
  • Irradiated red pepper powder (IRPP) was tested for its ability to retard fermentation and to maintain a high quality of Kimchi by the reduction of the initial microbial load. Kimchi containing IRPP at the doses of 0, 5, 10, 15, or 20 kGy was prepared. Quality indices for Kimchi in this study were pH, titratable acidity, reducing sugar content, total microbial count, lactic acid bacterial load, and sensory evaluation. Based on the pH and titratable acidity, the Kimchi with IRPP showed a retarded fermentation until 15 days. The number of the total aerobes and lactic acid bacteria of the Kimchi with IRPP were lower by about 1 log CFU/mL compared to control at day 0, however, the counts increased to 8.5 log CFU/mL after 10 days, which was similar to the control group. Kimchi that was fermented with 5 kGy IRPP was better than control and other treatments in odor and color, whereas the control scored highest in taste. Addition of IRPP showed a limited retardation of Kimchi fermentation without other quality deterioration.

Effects of Microbial Additives on the Chemical Characteristics, Microbes, Gas Emissions, and Compost Maturity of Hanwoo Steer Manure (미생물 첨가제가 거세한우 분의 이화학적 특성, 미생물 성상, 가스 발생량 및 퇴비 부숙도에 미치는 영향)

  • Young Ho Joo;Myeong Ji Seo;Seung Min Jeong;Ji Yoon Kim;Sam Churl Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.4
    • /
    • pp.264-269
    • /
    • 2022
  • The present study investigated effects of microbial additives on the floor of Hanwoo steer manure in barn. The treatment following: without additives (CON); additives (AMA). Each treatment used 3 barns as replication and each barn contained 5 Hanwoos. The Hanwoo steer manure in barns was sub-sampled from 5 sides of pen at 0, 4 and 12 weeks. The sub-samples were used for analyses of chemical compositions, microbial counts, gas emissions and compost maturity. The concentrations of moisture, organic matter, total nitrogen and carbon-to-nitrogen (C/N ratio) of Hanwoo steer manure before the microbial additives were each 59.1%, 83.2%, 1.78% and 50.0%, respectively. The counts of lactic acid bacteria, Yeast, Bacillus subtilis, and Escherichia coli (E. coli) were each 5.94, 6.83, 7,28 and 5.52 cfu/g, but Salmonella was not detected. The ammonia-N gas was 4.67 ppm, but hydrogen sulfide gas was not detected. After 4 weeks, moisture, organic matter, total nitrogen, pH and yeast count were lowest (p<0.05). The lactic acid bacteria, yeast, Escherichia coli (E. coli) and ammonia-N gas were not effects of microbial additives. All treatments was not detected at Salmonella count and hydrogen sulfide emission, and compost maturity was completed. After 12 weeks, the lactic acid bacteria and Bacillus subtilis were highest in AMA, while moisture, yeast and E. coli were lowest (p<0.05). The ammonia-N gas was not effect by microbial additive. Salmonella and hydrogen sulfide emission were not detected in all treatments, and compost maturity was completed. Therefore, in present study, the microbial additive did not affect of gas and compost maturity, but the pathogenic microorganism such as E. coli, were inhibited by microbial additives.

Physicochemical and microbial characteristics of domestic commercial semi solid type yogurt

  • Choi, Hye Sun;Park, Hye Young;Lee, Seuk Ki;Park, Ji Young;Joe, Dong Hwa;Oh, Sea Kwan;Lee, Ji Hyen;Won, Ju In
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.365-365
    • /
    • 2017
  • Yogurt is a food produced by bacterial fermentation of milk and the bacteria used to make it are known as "yogurt cultures". Most of them belong to probiotics such as Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus bacteria. Domestic fermented milk market is increasing and about 30 companies are producing yogurt. The purpose of this study was to analyze the quality characteristics of domestic commercial semisolid type yogurt. We collected 20 types of commercial yogurt at local markets. Physicochemical properties including pH, sugar content, acidity, viscosity and microbial characteristics of lactic acid bacteria counts were measured. The yogurt showed pH 4.5, 7.4~18.1% of sugar contents, 0.6~1.3% of total acids and 282~748 cP of viscosities. In the microorganism populations, lactic acid bacteria count were 6.5~11.5 Log CFU/mL and anaerobic lactic acid bacteria count were 7.2 ~ 11.1 Log CFU/mL. The quality characteristics were different depending on the constituents of the sample and the microorganisms used. These results are related to the quality characteristics of yogurts which are useful information about identifying new trends in domestic fermented milk industry.

  • PDF

Modeling of Recycling Oxic and Anoxic Treatment System for Swine Wastewater Using Neural Networks

  • Park, Jung-Hye;Sohn, Jun-Il;Yang, Hyun-Sook;Chung, Young-Ryun;Lee, Minho;Koh, Sung-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.355-361
    • /
    • 2000
  • A recycling reactor system operated under sequential anoxic and oxic conditions for the treatment of swine wastewater has been developed, in which piggery slurry is fermentatively and aerobically treated and then part of the effluent is recycled to the pigsty. This system significantly removes offensive smells (at both the pigsty and the treatment plant), BOD and others, and may be cost effective for small-scale farms. The most dominant heterotrophic were, in order, Alcaligenes faecalis, Brevundimonas diminuta and Streptococcus sp., while lactic acid bacteria were dominantly observed in the anoxic tank. We propose a novel monitoring system for a recycling piggery slurry treatment system through the use of neural networks. In this study, we tried to model the treatment process for each tank in the system (influent, fermentation, aeration, first sedimentation and fourth sedimentation tanks) based upon the population densities of the heterotrophic and lactic acid bacteria. Principal component analysis(PCA) was first applied to identify a relationship between input and output. The input would be microbial densities and the treatment parameters, such as population densities of heterotrophic and lactic acid bacteria, suspended solids(SS), COD, NH$_4$(sup)+-N, ortho-phosphorus (o-P), and total-phosphorus (T-P). then multi-layer neural networks were employed to model the treatment process for each tank. PCA filtration of the input data as microbial densities was found to facilitate the modeling procedure for the system monitoring even with a relatively lower number of imput. Neural network independently trained for each treatment tank and their subsequent combined data analysis allowed a successful prediction of the treatment system for at least two days.

  • PDF

Growth Survival of Listeria monocytogenes in Enoki Mushroom (Flammulina velutipes) at Different Temperatures and Antilisterial Effect of Organic Acids (팽이버섯에서 Listeria monocytogenes의 온도별 생존과 유기산에 의한 저감화)

  • Kim, Se-Ri;Kim, Won-Il;Yoon, Jae-Hyun;Jeong, Do-Yong;Choi, Song-Yi;Hwang, Injun;Rajalingam, Nagendran
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.630-636
    • /
    • 2020
  • Listeria monocytogenes (L. monocytogenes) was responsible for several recall cases owing to its incidence in mushrooms exported from the Republic of Korea. In this study, we investigated the survival of L. monocytogenes in enoki mushroom (Flammulina velutipes) at different temperatures and the antilisterial effect of its organic acids. Enoki mushrooms were innoculated with L. monocytogenes (initial concentration 4.5 log CFU/g) and stored at 1-35℃, No growth of L. monocytogenes in enoki mushrooms was observed at 1℃ for 30 days. 3.0 log CFU/g growth of L. monocytogenes was also achieved after 36 h and 24 h at 30℃ and 35℃, respectively. To evaluate the antilisterial effect of the organic acids (acetic acid, lactic acid, malic acid), enoki mushrooms were treated with 1-3% of each acid for 10-30 min. The efficacy of malic acid and lactic acid was significantly higher than that of acetic acid. Over 3.0 log reductions were observed when L. monocytogenes in enoki mushrooms was immersed in 3% lactic acid and malic acid over 10 minutes or more. Therefore, it is necessary to keep enoki mushrooms at 1℃ during the export process and treat them with 3% lactic acid and malic acid for 10 min prior to consumption.

Effects of Extract of Lactic Acid Bacteria Culture Media on Quality Characteristics of Pork Loin and Antimicrobial Activity against Pathogenic Bacteria during Cold Storage (유산균 배양액 추출액의 항병원성균 효과 및 냉장저장 육제품의 품질에 미치는 효과)

  • Lee, Yun Ji;Ko, Kwang Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.10
    • /
    • pp.1476-1480
    • /
    • 2016
  • Anti-microbial effects of the medium extracts from three different lactic acid bacteria (LB1, Lactobacillus acidophilus; LB2, Lactobacillus casei; LB3, Lactobacillus sicerae) were investigated. Three different extracts of lactic acid bacteria media (ELAM) did not show significant changes in pork loin quality after 3 and 14 days of cold storage such as general contents, colors, pH, and TBARS. To determine anti-bacterial activity of three ELAM, three pathogenic bacteria (Bacillus cereus, Bacillus subtilis, and Staphylococcus aureus) were obtained and incubated with ELAM-absorbed paper discs. ELAM of LB2 and LB3 showed significantly larger bacterial growth inhibitory zones compared with that of LB1 (P<0.05). When the pathogenic bacteria inoculated in pork loin with three ELAM, total microbial contents of pork loin treated with ELAM of LB3 after 14 days of cold storage showed significantly lower microbial contents compared to those of control, LB1 and LB2 (P<0.05). In conclusion, ELAM of LB3 derived from L. sicerae had the most effective pathogenic bacteria inhibitory activity on agar and pork loin. This is the first result to report the antibacterial effect of L. sicerae. If the safety and toxicity characteristics of L. sicerae are further investigated, this new lactic acid bacterium would have potential as an effective and nature-friendly food preserving agent.

Quality Characteristics of Salted Chinese Cabbage Treated with Electrolyzed-Acid Water during Storage (전해산화수로 세척한 절임 배추의 저장중 품질 특성)

  • Park, Woo-Po
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.365-367
    • /
    • 2004
  • Electrolyzed-acid water was used to prolong shelf life of salted Chinese cabbage during storage, Chinese cabbage was salted, washed twice with electrolyzed-acid water, packaged in high-density polyethylene film, and stored at $10^{\circ}C$. Titratable acidity, pH, color, and microbial loads of salted Chinese cabbage were measured. Treated sample showed lower pH, total microbial count, and lactic acid bacteria than those of control, whereas almost equal titratable acidity and color, Acidity of treated sample maintained lower pH value until 6 days, and remained constant thereafter, Sharp decrease in L value occured after 2 days for control, and was delayed 4-6 days for treated sample. Salted Chinese cabbage treated with electrolyzed-acid water showed lower total microbial load ($10^3\;CFU/mL$) and lactic acid bacteria ($10^1\;CFU/mL$) after washing, whereas similar loads, compared to control after 6 days. Treatment with electrolyzed-acid water maintained higher quality for salted Chinese cabbage, with limited shelf life extension.

Effects of sodium diacetate and microbial inoculants on fermentation of forage rye

  • Yan Fen Li;Eun Chan Jeong;Li Li Wang;Hak Jin Kim;Farhad Ahmadi;Jong Geun Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.96-112
    • /
    • 2023
  • Rye (Secale cereale L.) is a valuable annual forage crop in Korea but there is limited information about the impact of chemical and biological additives on fermentation characteristics of the crop. This experiment was conducted to investigate fermentation dynamics of wilted forage rye treated with the following six additives; control (no additive), sodium diacetate applied at 3 g/kg wilted forage weight (SDA3), 6 g/kg wilted forage weight (SDA6), inoculations (106 CFU/g wilted forage) of Lactobacillus plantarum (LP), L. buchneri (LB), or LP+LB. The ensiled rye sampled at 1, 2, 3, 5, 10, 20, 30, and 45 days indicated that the acidification occurred fast within five days of storage than the rest of the storage period. The microbial inoculants decline the pH of ensiled forage, more rapidly than the control or SDA treated, which accompanied by the decrease of water-soluble carbohydrates and increase of lactic acid. Compared with the control silage, all treatments suppressed ammonia-nitrogen formation below to 35 g/kg DM throughout the sampling period. Suppression of total microbial counting occurred in SDA6, LP, and LP + LB. The lactic acid production rates were generally higher in microbial inoculation treatments. Acetic acid concentration was lowest in the LP-treated silage and highest in the SDA- and LB-treated silages. The in vitro dry matter (DM) digestibility and total digestible nutrients were the highest in the silage treated with SDA (6 g/kg) at day 45 of ensiling. Based on lower ammonia-nitrogen concentrations and higher feed value, ensiling forage rye treated with SDA at 6 g/kg is promising through enhanced silage quality.

Application of Response Surface Methodology in Medium Optimization to Improve Lactic Acid Production by Lactobacillus paracasei SRCM201474 (반응표면분석법을 이용한 Lactobacillus paracasei SRCM201474의 생산배지 최적화)

  • Ha, Gwangsu;Kim, JinWon;Im, Sua;Shin, Su-Jin;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.522-531
    • /
    • 2020
  • The aim of this study was to establish the optimal medium composition for enhancing L(+)-lactic acid (LLA) production using response surface methodology (RSM). Lactobacillus paracasei SRCM201474 was selected as the LLA producer by productivity analysis from nine candidates isolated from kimchi and identified by 16S rRNA gene sequencing. Plackett-Burman design was used to assess the effect of eleven media components on LLA production, including carbon (glucose, sucrose, molasses), nitrogen (yeast extract, peptone, tryptone, beef extract), and mineral (NaCl, K2HPO4, MgSO4, MnSO4) materials. Glucose, sucrose, molasses, and peptone were subsequently chosen as promising media for further optimization studies, and a hybrid design experiment was used to establish their optimal concentrations as glucose 15.48 g/l, sucrose 16.73 g/l, molasses 39.09 g/l, and peptone 34.91 g/l. The coefficient of determination of the equation derived from RSM regression for LLA production was mathematically reliable at 0.9969. At optimum parameters, 33.38 g/l of maximum LLA increased by 193% when compared with MRS broth as unoptimized medium (17.66 g/l). Our statistical model was confirmed by subsequent validation experiments. Increasing the performance of LLA-producing microorganisms and establishing an effective LLA fermentation process can be of particular benefit for bioplastic technologies and industrial applications.