• 제목/요약/키워드: lactic acid microbial

검색결과 470건 처리시간 0.021초

미생물 Protease 또는 Papain으로 처리된 두유에서 젖산균의 산생함과 대두요구르트의 제조 (Acid Production by Lactic Acid Bacteria in Soy Milk Treated by Microbial Pretense or Papain and Preparation of Soy Yogurt)

  • 고영태
    • 한국식품과학회지
    • /
    • 제21권3호
    • /
    • pp.379-386
    • /
    • 1989
  • 본 연구에서는 농축대두단백으로 두유를 만들고 미생물 pretense와 papain을 단독 또는 혼합 사용하여 대두단백질을 가수분해한 후, 단백질이 일부 가수분해 된 두유에서 L. acidophilus의 생육과 산생성을 관찰하고 제조된 젖산균음료의 관능성을 조사하였다. Pretense 처리로 젖산균의 산생성이 촉진되었는데 미생물 pretense가 papain보다 효과적이었으며 2종의 효소를 혼합 사용했을 때는 상승효과가 보였다. 그러나 pretense 처리로 pH와 생균수는 큰 변화가 없었다. 미생물 pretense의 경우는 가수분해시간 15분까지, papain의 경우는 가수분해시간 45분까지 산생성 촉진효과가 현저했으나 그 후에는 3시간이 경과하여도 큰 변화가 없었다. 미생물 pretense 0.2% 또는 papain 0.2% 처리로 대두젖산균음료의 전체적인 기호도와 맛이 다소 개선되었다. Protease 처리 15분에 비단백태질소의 함량이 현저하게 증가하였고 후 3시간까지 서서히 증가하였다.

  • PDF

Effects of Temperature and Supplementation with Skim Milk Powder on Microbial and Proteolytic Properties During Storage of Cottage Cheese

  • Oh, Nam Su;Lee, Hyun Ah;Myung, Jae Hee;Joung, Jae Yeon;Lee, Ji Young;Shin, Yong Kook;Baick, Seung Chun
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권6호
    • /
    • pp.795-802
    • /
    • 2014
  • The aim of this study was to determine the effects of temperature and supplementation with skim milk powder (SMP) on the microbial and proteolytic properties during the storage of cottage cheese. Cottage cheese was manufactured using skim milk with 2% SMP and without SMP as the control, and then stored at $5^{\circ}C$ or $12^{\circ}C$ during 28 days. The chemical composition of the cottage cheese and the survival of the cheese microbiota containing starter lactic acid bacteria (SLAB) and non-starter culture lactic acid bacteria (NSLAB) were evaluated. In addition, changes in the concentration of lactose and lactic acid were analyzed, and proteolysis was evaluated through the measurement of acid soluble nitrogen (ASN) and non-protein nitrogen (NPN), as well as electrophoresis profile analysis. The counts of SLAB and NSLAB increased through the addition of SMP and with a higher storage temperature ($12^{\circ}C$), which coincided with the results of the lactose decrease and lactic acid production. Collaborating with these microbial changes, of the end of storage for 28 days, the level of ASN in samples at $12^{\circ}C$ was higher than those at $5^{\circ}C$. The NPN content was also progressively increased in all samples stored at $12^{\circ}C$. Taken together, the rate of SLAB and NSLAB proliferation during storage at $12^{\circ}C$ was higher than at $5^{\circ}C$, and consequently it led to increased proteolysis in the cottage cheese during storage. However, it was relatively less affected by SMP fortification. These findings indicated that the storage temperature is the important factor for the quality of commercial cottage cheese.

김치유래 젖산균의 균체지방산 분석을 이용한 분류학적 연구

  • 이정숙;정민철;김우식;이근철;김홍중;박찬선;이헌주;주윤정;이근종;안종석;박완;박용하;민태익
    • 한국미생물·생명공학회지
    • /
    • 제24권2호
    • /
    • pp.234-241
    • /
    • 1996
  • Two hundreds and thirty lactic acid bacteria, mostly isolated from Kimchi, including type strains were used for analysis of cellular fatty acids. The 230 test strains were recoverd in 7 major and 1 single clusters defined at Euclidian distance of 17.5. These aggregate taxa were equivalent to the genus Leuconostoc (aggregate group A, B, C and D), the genus Lactobacillus (aggregate group F), the genera Lactobacillus and Pediococcus (aggregate group E) and the genera Leuconostoc and Lactobacillus (aggregate group G). It is concluded as evident that FAMEs (Fatty Acid Methyl Esters) profile of cell can be used as a criterion in classification of lactic acid bacteria from kimchi. Additional comparative taxonomic studies need to be carried out on well chosen representative strains to determine the most appropriate methods of value.

  • PDF

Modeling and Simulation of Simultaneous Saccharification and Fermentation of Paper Mill Sludge to Lactic Acid

  • LIN, JIAN-QIANG;LEE, SANG-MOK;KOO, YOON-MO
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.40-47
    • /
    • 2005
  • Modeling and simulation for simultaneous saccharification and fermentation (SSF) process in bioconversion of paper mill sludge to lactic acid was carried out. The SSF process combined the enzymatic hydrolysis of paper mill sludge into glucose and the fermentation of glucose into lactic acid in one reactor. A mathematical modeling for cellulose hydrolysis was developed, based on the proposed mechanism of cellulase adsorption deactivation. Another model for simple lactic acid fermentation was also made. A whole mathematical model for SSF was developed by combining the above two models for cellulose hydrolysis and lactic acid fermentation. The characteristics of the SSF process were investigated using the mathematical model.

Lactobacillus plantarum Improves the Nutritional Quality of Italian Ryegrass with Alfalfa Mediated Silage

  • Ilavenil, Soundarrajan;Arasu, Mariadhas Valan;Vijayakumar, Mayakrishnan;Jung, Min-Woong;Park, Hyung Soo;Lim, Young Cheol;Choi, Ki Choon
    • 한국초지조사료학회지
    • /
    • 제34권3호
    • /
    • pp.174-178
    • /
    • 2014
  • The present study was planned to analyze the nutritional quality, microbial counts and fermentative acids in Italian ryegrass (IRG) 80% and alfalfa 20% (IRG-HV) mediated silage inoculated with lactic acid bacteria (LAB) as a probiotic strain for 3 months. Crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF), total digestible nutrient (TDN) and In-vitro dry matter digestibility (IVDMD), lactic acid bacteria (LAB), yeast and fungi counts and fermentation metabolites such as lactic acid, acetic acid and butyric acids were analyzed. The result shows that the nutritional quality and metabolite profiles of silage were significantly improved with LAB. For microbial counts, LAB showed dominant followed by yeast as compared with control silage. The pH of the silage also reduced significantly when silage inoculated with LAB. The result confirmed that silage preparation using different crops with L. plantarum inoculation is most beneficial for the farmers.

Ribosomally Synthesiszed Antimicrobial Peptides (Bacteriocins) in Lactic Acid Bacteria: A Review

  • Nes, Ingolf F.;Yoon, Sung-Sik;Diep, Dzung B.
    • Food Science and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.675-690
    • /
    • 2007
  • Bacteriocins in Gram-positive bacteria have attracted much attention because many have a strong antimicrobial activity also against bacteria outside the genera of the producers. Lantibiotics and the pediocin-like bactericins have attracted most attention since they kill a broad spectrum of Gram-positive bacteria including important pathogens. But many other promising Gram-positive bacteriocins have been thoroughly characterized. Recent studies have shown that bacteriocins may playa role in the intestinal flora to protect us against the food-borne pathogens. Bacterial genome sequencing has demonstrated that there may be an arsenal of such compounds and we are only seeing the top of the iceberg. The present review gives a short outlook of the field of bacteriocins with focus on lactic acid bacteria and includes recent findings.

Model Development for Lactic Acid Fermentation and Parameter Optimization Using Genetic Algorithm

  • LIN , JIAN-QIANG;LEE, SANG-MOK;KOO, YOON-MO
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1163-1169
    • /
    • 2004
  • An unstructured mathematical model is presented for lactic acid fermentation based on the energy balance. The proposed model reflects the energy metabolic state and then predicts the cell growth, lactic acid production, and glucose consumption rates by relating the above rates with the energy metabolic rate. Fermentation experiments were conducted under various initial lactic acid concentrations of 0, 30, 50, 70, and 90 g/l. Also, a genetic algorithm was used for further optimization of the model parameters and included the operations of coding, initialization, hybridization, mutation, decoding, fitness calculation, selection, and reproduction exerted on individuals (or chromosomes) in a population. The simulation results showed a good fit between the model prediction and the experimental data. The genetic algorithm proved to be useful for model parameter optimization, suggesting wider applications in the field of biological engineering.

Effect of Organic Acids on Microbial Populations and Salmonella typhimurium in Pork Loins

  • Kang, Seoknam;Jang, Aera;Lee, Sang Ok;Min, Joong Seok;Kim, Il Suk;Lee, Mooha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권1호
    • /
    • pp.96-99
    • /
    • 2003
  • The objective of this study was to evaluate the effects of various organic acids on microbial characteristics and Salmonella typhimurium in pork loins. Fresh pork loins were sprayed with various organic acids such as lactic acid, citric acid and acetic acid at various concentrations (0.5, 1, 1.5 and 2%). After spraying, the samples were packaged by HDPE film under air and stored at $4^{\circ}C$ for 14 days, and analyzed. Microbial deterioration of pork loins during the aerobic cold storage was delayed by organic acid spray. The bactericidal effect of acids increased with the increasing concentration. However, the inhibitory activity of organic acids during the storage varied with the kinds and concentrations of the acids. As for total plate counts, acetic acid was found to have the highest bactericidal activity, whereas citric acid was found to be the most inhibitory for coliform and S. typhimurium.

Modeling Growth Kinetics of Lactic Acid Bacteria for Food Fermentation

  • Chung, Dong-Hwa;Kim, Myoung-Dong;Kim, Dae-Ok;Koh, Young-Ho;Seo, Jin-Ho
    • Food Science and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.664-671
    • /
    • 2006
  • Modeling the growth kinetics of lactic acid bacteria (LAB), one of the most valuable microbial groups in the food industry, has been actively pursued in order to understand, control, and optimize the relevant fermentation processes. Most modeling approaches have focused on the development of single population models. Primary single population models provide fundamental kinetic information on the proliferation of a primary LAB species, the effects of biological factors on cell inhibition, and the metabolic reactions associated with cell growth. Secondary single population models can evaluate the dependence of primary model parameters, such as the maximum specific growth rate of LAB, on the initial external environmental conditions. This review elucidates some of the most important single population models that are conveniently applicable to the LAB fermentation analyses. Also, a well-defined mixed population model is presented as a valuable tool for assessing potential microbial interactions during fermentation with multiple LAB species.

A Culture-Independent Comparison of Microbial Communities of Two Maturating Craft Beers Styles

  • Joao Costa;Isabel N. Sierra-Garcia;Angela Cunha
    • 한국미생물·생명공학회지
    • /
    • 제50권3호
    • /
    • pp.404-413
    • /
    • 2022
  • The process of manufacturing craft beer involves a wide variety of spontaneous microorganisms, acting in different stages of the brewing process, that contribute to the distinctive characteristics of each style. The objective of this work was to compare the structure of microbial communities associated with two different craft beer styles (Doppelbock and Märzen lagers), at a late maturation stage, and to identify discriminative, or style-specific taxa. Bacterial and fungal microbial communities were analyzed by Illumina sequencing of 16S rRNA gene of prokaryotes and the ITS 2 spacer of fungi (eukaryotes). Fungal communities in maturating beer were dominated by the yeast Dekkera, and by lactic acid (Lactobacillus and Pediococcus) and acetic acid (Acetobacter) bacteria. The Doppelbock barrels presented more rich and diverse fungal communities. The Märzen barrels were more variable in terms of structure and composition of fungal and bacterial communities, with occurrence of exclusive taxa of fungi (Aspergillus sp.) and bacteria (L. kimchicus). Minority bacterial taxa, differently represented in the microbiome of each barrel, may underlie the variability between barrels and ultimately, the distinctive traits of each style. The composition of the microbial communities indicates that in addition to differences related to upstream stages of the brewing process, the contact with the wood barrels may contribute to the definition of style-specific microbiological traits.