• 제목/요약/키워드: lactic acid bacteria fermentation

검색결과 1,149건 처리시간 0.032초

각종 혐기성 미생물 발효에 의한 유기산 및 수소생산 (Hydrogen and Organic Acids Production by Fermentation Using Various Anaerobic Bacteria)

  • 김미선;윤영수;심상준;박태현;이정국
    • 한국수소및신에너지학회논문집
    • /
    • 제13권4호
    • /
    • pp.321-329
    • /
    • 2002
  • Clostridium butyricum, Lactobacillus amylophillus, Lactobacillus amylovorus, Lactobacillus acidophillus, AI-9 produced hydrogen and /or organic acids using glucose, lactose and starch at the anaerobic culture conditions. Cl. butyricum NCIB 9576 evolved 1,700 ml H2/L-culture broth and accumulated butyric acid, acetic acid, propionic acid and ethanol in its culture broth when lactose was used as a carbon source during 24 hrs of fermentation. L. amylovorus ATCC 33620 accumulated lactic and acetic acids and some reducing sugars when starch was used as a carbon source without hydrogen production. Instead of starch as a carbon source, L. amylovorus ATCC 33620 produced lactic acid from algal biomass during fermentation and the acid-heat or freeze-thaw pretreatment of algal biomass accelerate the lactic acid fermentation.

김치 발효중 겨자의 첨가효과 (The Additive Effects of Mustard Seed(Brassica juncea) during Fermentation of Kimchi)

  • 서권일;정용진;심기환
    • 한국식품저장유통학회지
    • /
    • 제3권1호
    • /
    • pp.33-38
    • /
    • 1996
  • To investigate the food preservative effects of mustard seed(Brassica juncea), mustard seed were added to Kimchi. Titratable acidity of Kimchi treated with mustard seed was higher than that of non-treated control at initial stage, but it was lower than control after 2 days of fermantation. The number of bacteria and lactic acid bacteria increased rapidly at the initial stage of fermentation and reached plateau by 2 days of fermentation. The number of bacteria and lactic acid bacteria of Kimchi treated with mustard seed was lower than that of control, and the more mustard seed added the less bacteria and lactic acid bacteria were observed.

  • PDF

Lactic acid bacteria를 이용한 마늘 고체 발효에 따른 생리활성 (Biological Activities of Solid-fermentation Garlic with Lactic Acid Bacteria)

  • 이중복;주우홍;권기석
    • 생명과학회지
    • /
    • 제26권4호
    • /
    • pp.446-452
    • /
    • 2016
  • 마늘(Allium sativum L.)은 많은 아시아 지역의 나라에서 민간요법 및 추출물을 이용하여 다양하게 사용하고 있다. 국내 전통채소류들은 다양한 기능성과 강한 생리학적 활성을 가지고 있으며, 기능성 식품재료로 사용이 가능하다. 본 연구는 유산균을 이용하여 고체마늘 발효에 따른 생리활성을 조사하고자 하였다. 마늘 고체 발효를 위해 유산균을 한국전통 발효식품인 젓갈로부터 분리 및 KCTC로 부터 분양 받아 사용하였다. 발효유산균 선별은 MRS 고체배지에 디스크법을 이용하여 마늘 착즙액에 저항을 보이며 증식하는 유산균을 선택하였다. 선별된 유산균을 이용한 마늘 고체발효 추출물의 총 폴리페놀과 플라보노이드 농도가 731.0-845.2 ug/g과 92.68-413.58 ug/g로 각각 조사되었다. 그리고 DPPH 라디컬 활성과 SOD 유사활성은 양성대조구인 비타민 C 50 ppm 보다 높은 활성을 보였다. 또한, 항당뇨 활성인 α-glucosidase 저해활성은 유산균 발효마늘에서 양성대조구인 acarbose 50 ppm 보다 높은 저해활성을 보이는 것으로 조사되었다. 본 연구결과 유산균 발효 마늘의 생리학적 활성을 증대를 통해 향후 항산화 활성과 항당뇨 활성을 갖는 유산균 발효 마늘의 개발을 위해 유산균을 활용이 가능하며, 발효물을 이용하여 기능성 식·음료 소재로의 개발 가능성을 보일 것으로 사료된다.

유산균 발효에 의한 소청룡탕의 발효 전 후 성분 변화 연구 (Analysis of Constituents in Socheongryong-tangs Fermented by Lactic acid bacteria)

  • 양민철;김동선;정상원;마진열
    • 한국한의학연구원논문집
    • /
    • 제17권3호
    • /
    • pp.115-121
    • /
    • 2011
  • Objective : The purpose of this study was to investigate the changes in the contents of constituents in Socheongryong-tang (CY) and its fermentations (FCY) with 10 species of lactic acid bacteria. Methods : Ten strains of lactic acid bacteria, Lactobacillus casei 127, L. acidophilus 128, L. casei 129, L. plantarum 144, L. amylophilus 161, L. curvatus 166, L. delbruekil subsp. lactis 442, L. casei 693, B. breve 744, and B. thermophilum 748, were used for the fermentation of Socheongryong-tang. The increased and decreased constituents were identified using HPLC/DAD and various liquid chromatographic techniques, and the structure was elucidated using NMR and MS. These compounds were quantitatively analyzed using an HPLC/DAD system. Results : The increased constituents were identified to be liquiritigenin (1) and cinnamyl alcohol (2), and the decreased constituent was determined to be liquiritin (3). Liquiritigenin (1) and cinnamyl alcohol (2) were increased in all of the FCYs, while liquiritin (3) was decreased. The fermentation of the ten lactic acid bacteria demonstrated that the decomposable rate of these three compounds in FCYs were different. Socheongryong-tang fermented by L. plantarum 144 and L. amylophilus 161 showed the most remarkable changes. Conclusions : CY could be increased antibacterial, neuroprotective, or antiinflammatory effect by fermentation with lactic acid bacteria, especially with L. plantarum and L. amylophilus, considering their known biological activities. In addition, it is expected that this study will help to establish quality control parameters for FCY.

유산균에 의한 양파 착즙액의 발효효과와 이화학적 특성 (Fermentation of onion extract by lactic acid bacteria enhances its physicochemical properties)

  • 김수환;이채미;정재희;최유리;이동훈;이채윤;허창기
    • 한국식품과학회지
    • /
    • 제54권4호
    • /
    • pp.445-454
    • /
    • 2022
  • 본 연구는 우수한 생리활성을 나타내는 것으로 알려진 양파 껍질을 식품으로 활용하고 유산균 발효를 통해 기능성 증진을 도모하고자 과육과 함께 양파 껍질을 착즙하고, 착즙액 발효에 적합한 유산균을 선정하고자 발효에 따른 품질특성 및 항산화 활성을 검토하였다. 양파 착즙액의 유산균 발효에 따라 pH와 당도는 감소하였으며, 적정 산도는 증가하였고 유산균 수는 발효 48시간까지 증가한 후 감소하였다. 총 유리당 함량은 모든 발효물에서 감소하였으며, 유리당 조성 변화의 경우 Bb와 Lb 접종 양파 착즙액 발효물에서는 fructose, glucose 및 sucrose가 감소하였으며, 이외의 균주 접종 양파 착즙액 발효물에서는 fructose와 sucrose는 감소한 반면, glucose는 증가하였다. 총 유기산 함량은 발효에 의해 증가하였으며, 유기산 중 lactic acid가 가장 많이 증가하였다. 발효에 따른 quercetin 함량은 Ll, Ls 및 Pp 접종 양파 착즙액 발효물은 감소한 반면, Bb, Ef, Lb 및 St 접종 양파 착즙액 발효물은 증가하였다. 총 폴리페놀 함량은 Bb, Ll, Lb 및 Ls 접종 양파 착즙액 발효물은 증가하였으나, Ef, St 및 Pp 접종 양파 착즙액 발효물은 감소하였고, 총 플라보노이드 함량은 St 접종 양파 착즙액 발효물을 제외한 모든 발효물에서 증가하였다. DPPH 및 ABTS 라디칼 소거능은 유산균 발효에 의해 증가하였다. 본 연구 결과 양파 착즙액의 유산균 발효는 생리활성과 기능성을 증진 시키는 것으로 나타났으며, 특히 B. breve KCTC 3441 균주 발효를 통해 quercetin, polyphenol, flavonoids 함량이 각각 50%, 57%, 39% 그리고 DPPH와 ABTS 라디칼 소거능은 74%와 29% 증가되었다. 따라서 양파착즙액의 발효 균주는 B. breve KCTC 3441이 적합한 것으로 판단된다.

Comparative Study on the Effects of Combined Treatments of Lactic Acid Bacteria and Cellulases on the Fermentation Characteristic and Chemical Composition of Rhodesgrass (Chloris gayana Kunth.) and Italian Ryegrass (Lolium multiflorum Lam.) Silages

  • Ridla, M.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권4호
    • /
    • pp.525-530
    • /
    • 1999
  • Prior to ensiling Rhodesgrass (RG) and Italian ryegrass (lRG) were treated with lactic acid bacteria (LAB) or with LAB+cellulases to compare their fermentation characteristics and chemical compositions. LAB (Lactobacillus casei) was added to all ensiling materials (except the untreated control) of RG and IRG at a concentration of $1.0{\times}10^5\;cfu.g^{-1}$ fresh forage. The enzymes used were Acremoniumcellulase (A), Meicelase (M) or a mixture of both (AM). Each enzyme was applied at levels of 0.005, 0.01 and 0.02 % of fresh forage. The silages with each treatment were incubated at 20, 30 and $40^{\circ}C$ and stored for about 2 months. While no marked differences were found between the RG and IRG silages with various treatments on dry matter (DM), volatile basic nitrogen (VBN) and water soluble carbohydrate (WSC) contents, there were significant differences in pH value, and lactic acid and butyric acid contents. LAB inoculation did not affect the fermentation characteristics of either the RG or IRG silages. The combined treatments of LAB+cellulases improved the fermentation quality of both the RG and IRG silages as evidenced by the decrease in pH value and increase in lactic acid content. Increasing the amount of added cellulase resulted in a decrease in pH value and an increase in lactic acid content in both the RG and IRG silages. Cellulases A and AM had a greater effect than cellulase M on the fermentation quality of the RG and IRG silages. Incubation temperatures of 30 and $40^{\circ}C$ appeared to be more appropriate environments for stimulating good fermentation than $20^{\circ}C$.

후산 발효 적합 균주 선발 및 특성 (Properties of Lactic Acid Bacteria That Cause Decrease in Post-Fermentation to Apply Product)

  • 손지양;김세헌
    • Journal of Dairy Science and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.51-58
    • /
    • 2013
  • Emerging studies suggest that vegetables or fruit juices deemed to be potential alternative base medium for lactic acid bacteria fermentation. Until now, limited studies have been carried out to evaluate such applications. Thus, the objective of present study is that lactic acid bacteria were evaluated for their viability at low pH, growth during storage at low temperature, and $CO_2$ formation. Furthermore, the effects of grapefruit extract with respect to cell viability, sensory ability, and organic acid production were evaluated for these strains. The probiotic properties of the strains, including acid tolerance, bile tolerance, and adhesion to human intestinal epithelial cells (HT-29 cells), prebiotic characteristics, and safety features were examined. All strains survived in MRS medium broth adjusted to pH 3.8, at $10^{\circ}C$ for 6 days, and did not produce $CO_2$ to check post fermentation. The medium of grapefruit extract fermentation by Lactobacillus plantarum CJIH 203 resulted in maximal viable counts, compared with other strains, and the extract subsequently tasted sour due to the presence of lactic acid. Lactobacillus plantarum CJIH203 was highly resistant to artificial gastric juice and intestinal juice, while Lactococcus lactis SJ09 strongly adhered to HT-29 cells. Tagatose showed the greatest ability to enhance the growth of L. plantarum SJ21, relative to the other strains. All strains were verified by safety tests such as hemolysis, gelatin hydration, and urea degradation. Therefore, these strains could be promising candidates for use in reducing excessive post-fermentation and functional products.

  • PDF

Inhibition of Lactic Acid Bacteria in Kimchi Fermentation by Nisin

  • CHOI, MIN HO;YUN HEE PARK
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권5호
    • /
    • pp.547-551
    • /
    • 1998
  • Sixty isolates of lactic acid bacteria found in kimchi, a traditional Korean dish of fermented vegetables, were tested for nisin sensitivity. Of the sixty isolates, all belonging to the genera Leuconostoc, Lactobacillus, and Pediococcus, fifty isolates were sensitive to nisin at a concentration of 100 IU/$m\ell$, and four isolates appeared to be resistant to nisin. This demonstrated that the nisin sensitivity of lactic acid bacteria found in kimchi varied considerably among isolates. In MRS broth containing nisin at concentrations of 100 to 300 IV/$m\ell$, the growth of sensitive isolates of Leuconostoc mesenteroides and Lactobacillus plantarum was inhibited for two to three days at 2$0^{\circ}C$. When nisin was added to kimchi preparations at a concentration of 100 IU/$m\ell$, the growth of lactic acid bacteria was delayed and reached a maximum two days later than that in kimchi without nisin. These results suggest the possible use of nisin in kimchi preparation, at recommended levels, to control the lactic acid fermentation. Scanning electron micrographs of a sensitive isolate L. plantarum revealed the formation of pores on cell surfaces followed by rapid cell wall destruction 1 h after the addition of nisin.

  • PDF

흡착 공정을 활용한 홍경천(Rhodiola sachalinensis) 유산균 발효물의 이화학적 특성 및 항산화 활성 (Physicochemical Properties and Antioxidative Activity of Lactic Acid Bacteria Fermented Rhodiola sachalinensis using Adsorption Process)

  • 성수경;이영경;조장원;이영철;김영찬;홍희도
    • 한국식품영양학회지
    • /
    • 제25권4호
    • /
    • pp.779-786
    • /
    • 2012
  • Rhodiola sachalinensis fermentates by lactic acid bacteria were prepared using the adsorption process, and were investigated for changes of the main compounds and anti-oxidative activities during the adsorption and fermentation process. While the R. sachalinensis extract (RSE), which did not go through the adsorption process, showed little change in pH during fermentation and a significant reduction in the number of lactic acid bacteria, the pre-preparatory adsorption process was found to be helpful for promoting fermentation and for maintenance of bacterial numbers. The contents of total phenolic compounds mostly decreased during the adsorption process, but showed an increasing tendency to rebound during the fermentation process. The contents of salidroside and p-tyrosol in the RSE were 1153.3 mg% and 185.0 mg% respectively, and they did not significantly change after treatment with acid clay or bentonite as adsorbents, which were 1093.0 and 190.5 mg% by acid clay, and 882.2 and 157.3 mg% by bentonite. When the extract was fermented after treatment with acid clay or bentonite, the salidroside contents were decreased by 282.7 and 505.0 mg% respectively, but the p-tyrosol contents were increased by 714.0 and 522.4 mg% respectively. Compared to the DPPH radical scavenging activity of the RSE (66.8%) at the conc. of 0.1%, that of the fermented RSE, which went through adsorption process with acid clay or bentonite, was significantly increased to 79.4 and 72.7% respectively at the same concentration (p<0.05). Though fermentation by lactic acid bacteria was suppressed in the RSE, the results suggested that the adsorption process may promote fermentation without any change in the content of major active compounds. It is expected that fermentation by lactic acid bacteria could improve the antioxidant activity and various associated functionalities of R. sachalinensis.

Variation in the functional compounds of molten salt Kimchi during fermentation

  • Park, Kyubeen;Kim, Yeonmi;Kim, Jae-Han;Park, Jong-Tae
    • 농업과학연구
    • /
    • 제46권1호
    • /
    • pp.173-182
    • /
    • 2019
  • To produce a high-quality Kimchi product, molten salt was used for the Kimchi. Changes in the physiochemical properties and functional compounds were analyzed during fermentation. The salinity of bay salt Kimchi was higher than that of the molten salt Kimchi. The fermentation speed of the lactic acid bacteria in the molten salt Kimchi was significantly faster. To evaluate the effects of the salts on the changes in the functional compounds during fermentation, the antioxidant activity, total phenolic compounds (TPC), flavonols, phenolic acids, and glucosinolates in Chinese cabbage were analyzed. In the first 9 days, antioxidants were decreased during this fermentation period and then, increased after that. TPC was slightly increased for all the conditions after 40 days fermentation. Kaempferol was a major flavonol but had a relatively larger decrease in the molten salt Kimchi than in the bay salt samples. Phenolic acid did not show any significant difference among the samples. The glucosinolate contents were significantly decreased in all the conditions of Kimchi during the fermentation period. Consequently, the molten salt greatly affected the fermentation speed of Kimchi and the total characteristics of the Kimchi lactic acid bacteria. Although the functional compounds of Chinese cabbage were decreased during the fermentation of Kimchi, this decrease did not profoundly deteriorate the food quality. Therefore, high-quality Kimchi with enhanced bioactivity will be available if appropriate Chinese cabbages that have enhanced functional compounds are used.