• Title/Summary/Keyword: lactic

Search Result 4,205, Processing Time 0.032 seconds

Isolation of Microorganism with HIgh Productivity and Cultivation Optimization for Lactic Acid Production (고생산성 젖산생성균 분리 및 배양 최적화)

  • Cho, Kyu-Hong;Cho, Yun-Kyung;Hong, Seung-Suh;Lee, Hyun-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.1
    • /
    • pp.6-11
    • /
    • 1995
  • In order to screen microorganism producing lactic acid with high productivity from nature, we used a medium containing 100 g/l glucose and selected several microorganisms producing more than 80 g/l L-lactic acid. We investigated their physiological characteristics and compared them. The best microorganism was identified as Lactobacillus casei subsp. rhamnosus. The optimum pH for growth and production of lactic acid was 6.0 and this strain showed the highest growth rate at around 30$\circ$C , but the optimum temperature for lactic acid production was 45$\circ$C . The growth was inhibited proportionally from 50 g/l to 300 g/l of glucose and the maximal cell mass increased according to increasing the concentration of corn steep liquor (CSL) protein up to 30 g/l. In batch fermentation for lactic acid production, we produced 128 g/l L-lactic acid with 20 g/l CSL protein and 150 g/l glucose in 35 hours. In pH-stat fed-batch fermentation, we were able to produce 183 g/l L-lactic acid.

  • PDF

Demineralization of Crab Shells by Chemical and Biological Treatments

  • Jung Woo-Jin;Jo Gyung-Hyun;Kuk Ju-Hee;Kim Kil-Yong;Park Ro-Dong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • To achieve demineralization of crab shell waste by chemical and biological treatments, lactic acid and lactic acid bacterium were applied. In 5.0 and $10\%$ lactic acid, pH rapidly decreased from 6.8 to 4.2 and from 4.5 to 2.4 at day 3, respectively, and thereafter the pH remained at an almost constant level. In a $10\%$ lactic acid bacterium inoculum, pH lowered to 4.6 at day 5. Relative residual ash content rapidly decreased to 49.1 and $16.4\%$ in 5 and $10\%$ lactic acid treatments, respectively, for the initial 12 h. In 2.5, 5 and $10\%$ lactic acid bacterium inoculums, relative residual ash content rapidly decreased to 55.2, 40.9 and $44.7\%$, respectively, on the first day. Residual dry masses were 76.4, 67.8 and $46.6\%$ in 2.5, 5 and $10\%$ lactic acid treatments, respectively, for the initial 12 h. After a one-time exchange of the lactic acid solution, in the $5.0\%$ lactic acid treatment, residual dry mass rapidly decreased from 66.0 to $41.4\%$. In 2.5, 5 and $10\%$ lactic acid bacterium inoculums, residual dry masses decreased to 67.6, 57.4 and $59.6\%$ respectively, on the first day. Protein contents after demineralization ranged from $51.3{\sim}54.7\%$ in the chemical treatments and decreased to $32.3\%$ in the lactic acid fermentation process. A negative relationship was shown between pH and demineralization rate in lactic acid and lactic acid bacterium treatments. These results suggest that lactic acid fermentation can be an alternative for demineralization of crab shells, even though the rate and efficiency of the demineralization is lower than the chemical treatment.

Probiotic Characteristics of Lactobacillus acidophilus KY1909 Isolated from Korean Breast-Fed Infant (한국인 유아 분변에서 분리한 Lactobacillus acidophilus KY1909의 프로바이오틱 특성)

  • Park, Jong-Gil;Yun, Suk-Young;Oh, Se-Jong;Shin, Jung-Gul;Baek, Young-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1244-1247
    • /
    • 2003
  • The purpose of this study was to isolate lactic acid bacteria that produced L(+) lactic acid from infant feces. Thirteen colonies were isolated with a MRS-plate containing 0.5% $CaCO_3$ to determine their ability to produce lactic acid. Based on their lactic acid production, 10 strains of Lactobacillus were identified to assess the ratio of lactate isomer using HPLC. A strain producing L-lactic acid was identified as Lactobacillus acidophilus, using API carbohydrate fermentation patterns and physiological tests, and named KY1909. The strain exhibited good acid tolerance in an artificial gastric juice as well as high bile resistance in MRS containing 0.5% bile acids. L. acidophilus KY1909 produced D(-) and L(+) lactic acid at a ratio of 6 : 94; whereas commercial strains of Lactobacillus acidophilus produced D(-) and L(+) lactic acid at a ratio of 1 : 1. These results demonstrate the L. acidophilus KY1909 can be utilized in fermented milk products and dietary supplements as a probiotic culture.

Effect of Lentinus edodes on the Growth of Intestinal Lactic Acid Bacteria

  • Bae, Eun-Ah;Kim, Dong-Hyun;Han, Myung-Joo
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.443-447
    • /
    • 1997
  • As the growth factor of lactic acid bacteria, LD (trehalose) was isolated from Lentinus edode5 by using silica gel column chromatography. LD induced the growth of Bifidobacteria breve and Lactobacillus brevis, which were isolated from human feces. LD selectively induced the growth of lactic acid bacteria among total microflora. When total intestinal microflora were cultured in the medium containing LD, it stimulated the growth of lactic acid bacteria and inhibited harmful enzymes, ${\beta}$-glucosidase, ${\beta}$-glucuronidase, and tryptophanase, of intestinal bacteria. LM, which was a monosaccharide from L. edooles, induced the growth of lactic acid bacteria but it seems to be invaluable in vivo. LH isolated from L. edodes by Sephadex G-100 column chromatography was not effective for the growth of lactic acid bacteria.

  • PDF

Production of Lactic Acid from Cheese Whey by Batch Culture of Lactobacillus sp. RKY2

  • Kim, Hyang-Ok;Wee, Young-Jung;Yun, Jong-Sun;Ryu, Hwa-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.181-185
    • /
    • 2005
  • We investigated the fermentative production of lactic acid from cheese whey and corn steep liquor as cheap raw materials using Lactobacillus sp. RKY2 to reduce the manufacturing cost of lactic acid. Lactic acid yields were obtained at more than 0.98 g/g from medium containing whey lactose. Lactic aid productivities and yields obtained from whey lactose were slightly higher than those obtained from pure lactose. The final concentration of lactic acid increased with increase, in whey lactose concentration, whereas the lactic acid productivity decreased probably due to substrate inhibition. The fermentation efficiencies were improved by addition of more corn steep liquor to the medium.

  • PDF

Modeling and Simulation of Lactic Acid Fermentation with Inhibition Effects of Lactic Acid and Glucose

  • Lin, Jian-qiang;Lee, Sang-Mok;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • An unstructured mathematical model for lactic acid fermentation was developed. This model was able to predict the inhibition effects of lactic acid and glucose and was con-firmed to be valid with various initial concentrations of lactic acid and glucose. Simulation of energy production was made using this mathematical model, and the relationship between the kinetics of energy metabolism and lactic acid production was also analyzed.

Some Probiotic Properties of Some Lactic Acid Bacteria and Yeasts Isolated from Jeot-gal. (젓갈 프로바이오틱 생균의 내산성 및 내담즙 특성)

  • 이나경;김현욱;최신양;백현동
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.297-300
    • /
    • 2003
  • In order to select probiotics with a high survival rate in gut and the growth inhibition of virulent pathogens to human beings or animals, we have screened lactic acid bacteria and yeasts from Jeot-gal to assess resistance against the artificial gastric acid and bile juice. Lactic acid bacteria and yeasts isolated were incubated for 24 h in artificial bile juice after incubation for 2 h in artificial gastric acid. Especially, strain HW 161 and strain NK 181 showed the higher survival for 2 h incubation in artificial gastric acid. All of 3 strains of lactic acid bacteria and 2 strains of yeast were showed higher growth rate than the control in artificial bile. The antimicrobial activity of lactic acid bacteria and yeasts was also investigated to prove efficacy as probiotic organisms. Lactic acid bacteria were shown the inhibition of Gram positive and negative bacteria, but yeasts narrow inhibition.

Synthesis and Physical Properties of New Biodegradable Polyester-Polypeptide Copolymer

  • Yong Kiel Sung;Chu
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.147-154
    • /
    • 1992
  • Poly (glycolic aclu-co-glycine-L-lactic aclu) has been prepared by rlng opening polymerlzation. The monomer 6-methyl morpholine-2, 5-dlone was synthe-slzed by bromoproplonylation of 2 bromopropionyl bromide with glycine. Glycolide and 6-methyl morpholine-2, 5-dione have been used as starling materials for polydepsipeptides. The synthesized copolymers have been Identlrled by NMR and FT-lR spectrophotometer. The Tg value of poly(glycollc aclu-co glycine-L-tactic acld ) Is In creased with increasing mole fraction of 6-methylmorpholine-2, 5-dlone(60-$84^{\circ}C$). The glass trasltion temperature of poly(glycolic acid-co-glycine-L-lactic-acid) (62-$86^{\circ}C$) is lower than that of poly (L-lactic acrid-co-glycine-L-lactic acid ). The thermal degradation of poly( L-lactic acid-co- glycine-L-lactic acid ) Is decreased with increasing mole fraction of L-lactide. The thermal degrada pion of poly(glycolic acrid-co-91ycine-L-lactic aclu ) is increased with increasing mole Fraction of glycolide.

  • PDF

Free Fatty Acid Accumulation by Mesophilic Lactic Acid Bacteria in Cold-Stored Milk

  • Coskun, Hayri;Ondul, Eda
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.133-138
    • /
    • 2004
  • This study was aimed to determine the accumulation of free fatty acid by mesophilic lactic acid bac-teria (Lactococcus lactis subsp. lactis 1471, Lactococcus lactis subsp. cremoris 1000 and Lactobacillus casei 111) in cold-stored milk. According to the results, all cold-stored milks had higher acid degree val-ues than those of fresh milk. This phenomenon showed that a slight increase occurred in the accumulation of free fatty acids as a result of spontaneous lipolysis during cold storage. All lactic acid bacteria showed good performance in production of titratable acidity, which increased during fermentation of the milk (fresh and stored milks). Moreover, as the storage time was prolonged, more free fatty acid accumulation was obtained from the fermentation of the cold-stored milk by the investigated lactic acid bacteria. The control milk, which was without lactic acid bacteria, showed no change in the accumulation of free fatty acid during fermentation. From this result, it can be suggested that longer cold-storage time can induce higher free fatty acid accumulation in milk by lactic acid bacteria.

Characteristics of Lactic Acid Production by Lactobacillus buchneri Isolated from Kimchi (김치에서 분리된 Lactobacillus buchneri의 젖산 생산 특성)

  • Sim, Hyun-Su;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.286-290
    • /
    • 2015
  • Lactic acid is a useful platform chemical for a wide range of food and industrial applications such as pharmaceuticals and cosmetics. Among 313 strains of lactic acid bacteria isolated from different traditional Korean fermented foods, eight Lactobacillus strains effectively utilized xylose as a carbon source to produce lactic acid. A lactic acid bacterium identified as Lactobacillus buchneri produced the highest amount of lactic acid from xylose under anaerobic conditions. The optimum xylose concentration and incubation temperature were 50 g/l and 37℃, respectively; under these conditions, 22.3 g/l lactic acid was produced.