• Title/Summary/Keyword: laboratory rock test

Search Result 276, Processing Time 0.023 seconds

Blasting vibration coefficients and mechanical characteristics of Taegu area (대구지역지층의 지질특성과 대표암반에 대한 발파진동계수산출)

  • 안명석;김종대;김남수
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.211-217
    • /
    • 2000
  • In this, study, some laboratory tests and in-situ test were performed for Taegu area. Test blasting was conducted to determine blasting vibration coefficients. The uniaxial strength of rocks vary widely from weathered rock to extremely hard rock. Boasting vibration coefficient, K and n were 114.8, 1.48 for Sungseu site, where rocks show weathered to medium strength.

  • PDF

Blast Design of Hilly Rock Excavation Adjacent to Structures and Facilities (구조물 및 시설물 인접 구릉지의 암반굴착 발파설계)

  • 류창하;선우춘;신희순;정소걸;최병희
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.38-46
    • /
    • 1994
  • This paper concerns the design of blasts adjacent to structures and facilities. In order to investigate the site characteristics, measurements of in-situ wave propagation and laboratory tests of rock cores taken from the boreholes were carried out. Effects of rock media and delay intervals on ground vibration levels were identified from over sixty measurements of three times of test blasts. For practical use in the field, an empirical propagation equation was derived so as to reflect the characteristics of rock media and delay effects. Safe limits of vibration level for structures were conservatively established based on various suggested criteria. Safe limits for facilities were adopted so that vibration levels induced by blasting should not exceed the allowable limits specified in the manufacturer's installation condition. Suggested were blast pattern and operation to enhance the rock fracturing and to reduce the ground vibration levels under the restricted conditions.

  • PDF

Simple Evaluation Method of Uplift Resistance for Frictional Shallow Anchors in Rock

  • Kim, Daehong;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • This paper presents the results of full-scale load tests performed frictional anchors to various lengths at several sites in Korea. Various rock types were tested, ranging from highly weathered shale to sound gneiss. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. Laboratory tests were also conducted to investigate the influence of the corrosion protection sheath on the bond strength. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined. By evaluation of the ultimate uplift capacity of anchor foundations in a wide range of in situ rock masses, rock classification suitable for structural foundation was developed. Finally, a very simple and economical design procedure is proposed for rock anchor foundations subjected to uplift tensile loads.

Vibration analysis of mountain tunnel lining built with forepoling method

  • Gao, Yang;Jiang, Yujing;Du, Yanliang;Zhang, Qian;Xu, Fei
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.583-590
    • /
    • 2018
  • Nowadays, many tunnels have been commissioned for several decades, which require effective inspection methods to assess their health conditions. The ambient vibration test has been widely adopted for the damage identification of concrete structures. In this study, the vibration characters of tunnel lining shells built with forepoling method was analyzed based on the analytical solutions of the Donnell-Mushtari shell theory. The broken rock, foreploing, rock-concrete contacts between rock mass and concrete lining, was represented by elastic boundaries with normal and shear stiffness. The stiffness of weak contacts has significant effects on the natural frequency of tunnel lining. Numerical simulations were also carried out to compare with the results of the analytical methods, showing that even though the low nature frequency is difficult to distinguish, the presented approach is convenient, effective and accurate to estimate the natural frequency of tunnel linings. Influences of the void, the lining thickness and the concrete type on natural frequencies were evaluated.

Analysis on Component and Mechanical Characteristics for Crushed Stone of Excavated Rocks( I ) (지하굴착암 쇄석의 성분 및 역학적 특성 분석( I ))

  • 이상호;차완용;김영수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.74-82
    • /
    • 2003
  • In this paper, an experimental program was undertaken to test the analysis on Component and mechanical characteristics for crushed stone of excavated Rocks from Sandstone, Shale, Mudstone, for use as a new source of aggregate. Physical and mechanical properties, required for aggregate materials, of major constituents of rock wastes including Sandstone, Shale, Mudstone, Felsite, Basalt, Marl were measured in the laboratory Test results showed that the Shale, Felsite, Basalt tested in this study might possibly be used for construction aggregates. In case of Sandstone and Mudstone, some physical properties such as rock strength were generally adoptable but the aggregate characteristics were lower than required.

Factors affecting particle breakage of calcareous soil retrieved from South China Sea

  • Wang, Xinzhi;Shan, Huagang;Wu, Yang;Meng, Qingshan;Zhu, Changqi
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.173-185
    • /
    • 2020
  • Calcareous soil is originated from marine biogenic sediments and weathering of carbonate rocks. The formation history for calcareous sediment includes complex physical, biological and chemical processes. It is preferably selected as the major fill materials for hydraulic reclamation and artificial island construction. Calcareous sands possess inter pores and complex shape are liable to be damaged at normal working stress level due to its fragile nature. Thus, the engineering properties of calcareous soil are greatly affected by its high compressibility and crushability. A series of triaxial shear tests were performed on calcareous sands derived from South China Sea under different test conditions. The effects of confining pressure, particle size, grading, compactness, drainage condition, and water content on the total amount of particle breakage for calcareous soil were symmetrically investigated. The test results showed that the crushing extent of calcareous sand with full gradation was smaller than that a single particle group under the same test condition. Large grains are cushioned by surrounding small particles and such micro-structure reduces the probability of breakage for well-graded sands. The increasing tendency of particle crushing for calcareous sand with a rise in confining pressure and compactness is confirmed. It is also evident that a rise in water content enhances the amount of particle breakage for calcareous sand. However, varying tendency of particle breakage with grain size is still controversial and requires further examination.

The tunnel model tests of material development in different surrounding rock grades and the force laws in whole excavation-support processes

  • Jian Zhou;Zhi Ding;Jinkun Huang;Xinan Yang;Mingjie Ma
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.51-69
    • /
    • 2024
  • Currently, composite lining mountain tunnels in China are generally classified based on the [BQ] method for the surrounding rock grade. Increasingly, tunnel field construction is replicated indoors for scale down model tests. However, the development of analogous materials for model tests of composite lining tunnels with different surrounding rock grades is still unclear. In this study, typical Class III and V surrounding rock analogous materials and corresponding composite lining support materials were developed. The whole processes of excavation-support dynamics of the mountain tunnels were simulated. Data on the variation of deformations, contact pressures and strains on the surrounding rock were obtained. Finally, a comparative analysis between model tests and numerical simulations was performed to verify the rationality of analogous material development. The following useful conclusions were obtained by analyzing the data from the tests. The main analogous materials of Class III surrounding rock are barite powder, high-strength gypsum and quartz sand with fly ash, quartz sand, anhydrous ethanol and rosin for Class V surrounding rock. Analogous materials for rockbolts, steel arches are replaced by aluminum bar and iron bar respectively with both shotcrete and secondary lining corresponding to gypsum and water. In addition, load release rate of Class V surrounding rock should be less than Class III surrounding rock. The fenestration level had large influence on the load sharing ratio of the secondary lining, with a difference of more than 30%, while the influence of the support time was smaller. The Sharing ratios of secondary lining in Class III surrounding rock do not exceed 12%, while those of Class V surrounding rock exceed 40%. The overall difference between the results of model tests and numerical simulations is small, which verifies the feasibility of similar material development in this study.

Direct and indirect methods for determination of mode I fracture toughness using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • In this paper, mode I fracture toughness of rock was determined by direct and indirect methods using Particle Flow Code simulation. Direct methods are compaction tension (CT) test and hollow centre cracked quadratic sample (HCCQS). Indirect methods are notched Brazilian disk (NBD) specimen, the semi-circular bend (SCB) specimen, hollow centre cracked disc (HCCD), the single edge-notched round bar in bending (SENRBB) specimen and edge notched disk (END). It was determined that which one of indirect fracture toughness values is close to direct one. For this purpose, initially calibration of PFC was undertaken with respect to data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, the simulated models in five introduced indirect tests were cross checked with the results from direct tests. By using numerical testing, the failure process was visually observed. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Mode I fracture toughness of rock in direct test was less than other tests results. Fracture toughness resulted from semi-circular bend specimen test was close to direct test results. Therefore semi-circular bend specimen can be a proper test for determination of Mode I fracture toughness of rock in absence of direct test.

Comparison of Rock Young's Moduli Determined from Various Measurement Methods (다양한 시험법으로 규명된 암반 탄성계수 비교)

  • Ryu Kuen-Hwan;Chang Chan-Dong
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.1-14
    • /
    • 2006
  • Various measurements were carried out to estimate the modulus of deformation in two dominant rock types in Korea: granite and gneiss. Four most commonly used methods were utilized: Goodman jack tests, PS well logging, laboratory ultrasonic tests and laboratory uniaxial loading tests. Laboratory static and dynamic Young's moduli depend on the magnitude of the applied axial stress, range of Sequency used for measurement and the loading/unloading condition. As the laboratory measurement condition approaches to that in situ, the resultant moduli also appear to be comparable to that in situ. This suggests that the simulation of in situ stress condition is important when the modulus of rock is determined in the laboratory Dynamic Young's modulus is generally higher than static Young's modulus because of (micro)crack behavior in response to the stress, different range of frequency used for measurements, and the effect of the amplitude of deformation. Understanding of the relations in moduli from different measurement methods will help estimate appropriate in situ values.

Bearing capacity of a Flysch rock mass from the characterization of the laboratory physical properties and the Osterberg test

  • Hernan Patino;Ruben A. Galindo
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.573-594
    • /
    • 2024
  • This article presents a research study, with both laboratory and field tests, of a deep foundation in a markedly anisotropic medium. Particularly it has focused on the evaluation of the behavior of a pile, one meter in diameter, embedded in a rocky environment with difficult conditions, in the Flysch of the Spanish city of San Sebastián. To carry out the research, the site of a bridge over the Urumea River was chosen, which was supported by pre-excavated reinforced concrete piles. 4 borings were carried out, by the rotation and washing method, with continuous sampling and combined with flexible dilatometer tests. In the field, an Osterberg load test (O-cell) was performed, while in the laboratory, determinations of natural moisture, natural unit weight, uniaxial compressive strength (UCS), point load strength (PLS), compressive wave propagation velocity (Vc) and also triaxial and direct shear tests were carried out. The research results indicate the following: a) the empirical functions that correlate the UCS with the PLS are not always linear; b) for the studied Flysch it is possible to obtain empirical functions that correlate the UCS with the PLS and with the Vc; c) the bearing capacity of the studied Flysch is much greater than if it is evaluated by different load capacity theories; d) it is possible to propose an empirical function that allows evaluating the mobilized shear strength (τm), as a function of the UCS and the displacement relative of the pile (δr).