• Title/Summary/Keyword: laboratory measurement methods

Search Result 435, Processing Time 0.025 seconds

Microsturucture of pottery by the measurement of firing temperature (토기의 소성온도에 따른 미세조직 비교연구)

  • Hong, Jong-Ouk;Jung, Kwang-Yong
    • 보존과학연구
    • /
    • s.15
    • /
    • pp.1-20
    • /
    • 1994
  • A typology was established for 15 pottery artefacts at Chejuisland. Conjectured methods of manufacture were confirmed by radiography X-ray diffraction. Scanning electron microscopy etc. The compositions and mineralogy of $500^{\circ}C$ to $1200^{\circ}C$ was measured and compared with those of microstructure. The mechanism of sintering was impurity-initiated, liquid-phase sintering. The making, firing, and sometimes exploding of the figurines may have been the prime function of the pottery at this site rather than being manufactured as permanent, portable object.

  • PDF

Probing of Concrete Specimens using Ground Penetration Radar

  • Rhim, HongChul
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.262-264
    • /
    • 2004
  • Ground Penetrating Radar (GPR) has been used to image inside concrete specimens embedded with steel bars and delamination. An imaging algorithm has been developed to improve measurement output generated from a commercial radar system. For the experiments, laboratory size concrete specimens are made with the dimensions of $1,000mm(W){\times}1,000mm(L){\times}250mm(D)$. The results have shown improved output of the radar measurements compared to commercially available processing methods.

Wind-induced tall building response: a time-domain approach

  • Simiu, Emil;Gabbai, Rene D.;Fritz, William P.
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.427-440
    • /
    • 2008
  • Estimates of wind-induced wind effects on tall buildings are based largely on 1980s technology. Such estimates can vary significantly depending upon the wind engineering laboratory producing them. We describe an efficient database-assisted design (DAD) procedure allowing the realistic estimation of wind-induced internal forces with any mean recurrence interval in any individual member. The procedure makes use of (a) time series of directional aerodynamic pressures recorded simultaneously at typically hundreds of ports on the building surface, (b) directional wind climatological data, (c) micrometeorological modeling of ratios between wind speeds in open exposure and mean wind speeds at the top of the building, (d) a physically and probabilistically realistic aerodynamic/climatological interfacing model, and (e) modern computational resources for calculating internal forces and demand-to-capacity ratios for each member being designed. The procedure is applicable to tall buildings not susceptible to aeroelastic effects, and with sufficiently large dimensions to allow placement of the requisite pressure measurement tubes. The paper then addresses the issue of accounting explicitly for uncertainties in the factors that determine wind effects. Unlike for routine structures, for which simplifications inherent in standard provisions are acceptable, for tall buildings these uncertainties need to be considered with care, since over-simplified reliability estimates could defeat the purpose of ad-hoc wind tunnel tests.

The Measurement of the LIDAR Ratio by Using the Rotational Raman LIDAR

  • Choi, Sung-Chul;Baik, Sung-Hoon;Park, Seung-Kyu;Cha, Hyung-Ki;Song, Im-Kang;Kim, Duk-Hyeon
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.174-177
    • /
    • 2010
  • The rotational Raman LIDAR technique has been used to accurately measure aerosol optical properties such as backscatter coefficient, extinction coefficient, and LIDAR ratio. In the case of the vibrational Raman technique, the ${\AA}$ngstr$\ddot{o}$om exponent, which has wavelength dependence on the particle properties, is assumed to obtain the extinction coefficient. However, this assumed ${\AA}$ngstr$\ddot{o}$m exponent can cause systematic errors in retrieving aerosol optical properties. In the case of the rotational Raman technique, the aerosol optical properties can be measured without any assumptions about the ${\AA}$ngstr$\ddot{o}$m exponent. In this paper, the LIDAR ratio was measured by using the rotational Raman LIDAR and vibrational Raman LIDAR in the troposphere. And, the LIDAR ratios measured by these two methods were compared.

Accurate Detection of a Defective Area by Adopting a Divide and Conquer Strategy in Infrared Thermal Imaging Measurement

  • Jiangfei, Wang;Lihua, Yuan;Zhengguang, Zhu;Mingyuan, Yuan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1644-1649
    • /
    • 2018
  • Aiming at infrared thermal images with different buried depth defects, we study a variety of image segmentation algorithms based on the threshold to develop global search ability and the ability to find the defect area accurately. Firstly, the iterative thresholding method, the maximum entropy method, the minimum error method, the Ostu method and the minimum skewness method are applied to image segmentation of the same infrared thermal image. The study shows that the maximum entropy method and the minimum error method have strong global search capability and can simultaneously extract defects at different depths. However none of these five methods can accurately calculate the defect area at different depths. In order to solve this problem, we put forward a strategy of "divide and conquer". The infrared thermal image is divided into several local thermal maps, with each map containing only one defect, and the defect area is calculated after local image processing of the different buried defects one by one. The results show that, under the "divide and conquer" strategy, the iterative threshold method and the Ostu method have the advantage of high precision and can accurately extract the area of different defects at different depths, with an error of less than 5%.

Improvement of the Spectral Reconstruction Process with Pretreatment of Matrix in Convex Optimization

  • Jiang, Zheng-shuai;Zhao, Xin-yang;Huang, Wei;Yang, Tao
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.322-328
    • /
    • 2021
  • In this paper, a pretreatment method for a matrix in convex optimization is proposed to optimize the spectral reconstruction process of a disordered dispersion spectrometer. Unlike the reconstruction process of traditional spectrometers using Fourier transforms, the reconstruction process of disordered dispersion spectrometers involves solving a large-scale matrix equation. However, since the matrices in the matrix equation are obtained through measurement, they contain uncertainties due to out of band signals, background noise, rounding errors, temperature variations and so on. It is difficult to solve such a matrix equation by using ordinary nonstationary iterative methods, owing to instability problems. Although the smoothing Tikhonov regularization approach has the ability to approximatively solve the matrix equation and reconstruct most simple spectral shapes, it still suffers the limitations of reconstructing complex and irregular spectral shapes that are commonly used to distinguish different elements of detected targets with mixed substances by characteristic spectral peaks. Therefore, we propose a special pretreatment method for a matrix in convex optimization, which has been proved to be useful for reducing the condition number of matrices in the equation. In comparison with the reconstructed spectra gotten by the previous ordinary iterative method, the spectra obtained by the pretreatment method show obvious accuracy.

A Review of the Characteristics of Early Apparatus and Methods for Hemoglobin Estimation (Hemoglobin 평가를 위한 초기 기구의 특성 및 측정법 고찰)

  • Kwon, Young-Il
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.4
    • /
    • pp.401-410
    • /
    • 2016
  • Since the late 19th century, scientific logic and techniques have been used extensively in the field of clinical pathology, including many laboratory tests utilizing various apparatuses and instruments. Among the techniques to measure hemoglobin, the visual color comparison method was most popular around this time; the specific gravity method and gasometric method were not widely adopted. Instruments that use the visual color comparison method include Gowers' hemoglobinometer, von Fleischl's hemoglobinometer, Dare's hemoglobinometer, Oliver's hemoglobinometer, Haden-Hausser hemoglobinometer, and Spencer Hb meter. Initially, the visual color comparison methods were used to diluate and hemolyze blood with distilled water and then to measure its color. Later, these methods were further developed to measure hemoglobin without dilution, and improved with the formation of acid or alkaline hematin ensuring the stability of color development. Hammerschlag's method as well as the Schmaltz and Peiper's methods were based on specific gravity measurement, but they were not widely used. The gasometric method used the Van Slyke gasometer, indirectly measuring the hemoglobin concentration. This method provides the most accurate results. This survey examined the characteristics and limitations of hemoglobinometers and methods used to measure hemoglobin from the late 19th century to the early-and mid-20th century. Moreover, this study aims to improve the understanding and applicability of the current methods and emerging technologies used in measuring hemoglobin. It is also expected that this investigation is the starting point to promote awareness of the need to organize historical data for a variety of historical relics of the diagnostic laboratory tests.

Determination of Inorganic Phosphate in Paprika Hydroponic Solution using a Laboratory-made Automated Test Stand with Cobalt-based Electrodes (코발트전극과 자동시험장치를 이용한 파프리카 양액 내 무기인산 측정)

  • Kim, Hak-Jin;Son, Dong-Wook;Kwon, Soon-Goo;Roh, Mi-Young;Kang, Chang-Ik;Jung, Ho-Seop
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.326-333
    • /
    • 2011
  • The need for rapid on-site monitoring of hydroponic macronutrients has led to the use of ion-selective electrodes, because of their advantages over spectrophotometric methods, including simple methodology, direct measurement of analyte, sensitivity over a wide concentration range, and low cost. Stability and repeatability of response can be a concern when using multiple ion-selective electrodes to measure concentrations in a series of samples because accuracy might be limited by drifts in electrode potential. A computer-based measurement system could improve accuracy and precision because of both consistent control of sample preparation and easy calibration of sensors. Our goal was to investigate the applicability of a cobalt-based electrode used in conjunction with a laboratory-made automated test stand for quantitative determination of ${PO_4}^-$ in hydroponic solution. Six hydroponic solutions were prepared by diluting highly concentrated paprika hydroponicsolution to provide a concentration range of 1 to 300 ppm $PO_4$-P. A calibration curve relating electrode response to phosphate in paprika hydroponic solution titrated to pH 4 with 0.025M KHP was developed based on the Nikolskii-Eisenman equation with a coefficient of determination ($R^2$) of 0.94. The laboratory-made test stand consisting of three cobalt-based electrodes measured phosphate concentrations similar to those obtained with standard laboratory methods (a regression slope of 0.98 with $R^2$ = 0.80). However, the y intercept was relatively high, 30 ppm, probably due to the relatively large amount of variation present among multiple measurements of the same sample. Further studies on the high variation in EMFs obtained with cobalt electrodes during replicate measurements were required for P estimations comparable to those obtained with standard laboratory instruments.

Application of In Situ Measurement for Site Remediation and Final Status Survey of Decommissioning KRR Site

  • Hong, Sang Bum;Nam, Jong Soo;Choi, Yong Suk;Seo, Bum Kyoung;Moon, Jei Kwon
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.173-178
    • /
    • 2016
  • Background: In situ gamma spectrometry has been used to measure environmental radiation, assumptions are usually made about the depth distribution of the radionuclides of interest in the soil. The main limitation of in situ gamma spectrometry lies in determining the depth distribution of radionuclides. The objective of this study is to develop a method for subsurface characterization by in situ measurement. Materials and Methods: The peak to valley method based on the ratio of counting rate between the photoelectric peak and Compton region was applied to identify the depth distribution. The peak to valley method could be applied to establish the relation between the spectrally derived coefficients (Q) with relaxation mass per unit area (${\beta}$) for various depth distribution in soil. The in situ measurement results were verified by MCNP simulation and calculated correlation equation. In order to compare the depth distributions and contamination levels in decommissioning KRR site, in situ measurement and sampling results were compared. Results and Discussion: The in situ measurement results and MCNP simulation results show a good correlation for laboratory measurement. The simulation relationship between Q and source burial for the source layers have exponential relationship for a variety depth distributions. We applied the peak to valley method to contaminated decommissioning KRR site to determine a depth distribution and initial activity without sampling. The observed results has a good correlation, relative error between in situ measurement with sampling result is around 7% for depth distribution and 4% for initial activity. Conclusion: In this study, the vertical activity distribution and initial activity of $^{137}Cs$ could be identifying directly through in situ measurement. Therefore, the peak to valley method demonstrated good potential for assessment of the residual radioactivity for site remediation in decommissioning and contaminated site.

Plasma Neutrophil Gelatinase-Associated Lipocalin as a Marker of Tubular Damage in Diabetic Nephropathy

  • Kim, So Young;Jeong, Tae-Dong;Lee, Woochang;Chun, Sail;Sunwoo, Sung;Kim, Soon Bae;Min, Won-Ki
    • Annals of Laboratory Medicine
    • /
    • v.38 no.6
    • /
    • pp.524-529
    • /
    • 2018
  • Background: An increase in neutrophil gelatinase-associated lipocalin (NGAL) indicates tubular injury. Diabetic nephropathy causes typical changes in the kidney, characterized by glomerulosclerosis and eventual tubular damage. We validated the usefulness of plasma NGAL (pNGAL) as a biomarker of tubular damage in patients with diabetic nephropathy. Methods: We included 376 patients with diabetes mellitus (260 patients with chronic renal insufficiency who had not received hemodialysis and 116 hemodialyzed due to diabetic nephropathy) and 24 healthy controls. Patients with chronic renal insufficiency were divided into three groups according to urinary albumin excretion (UAE) levels. pNGAL levels were measured using the Triage NGAL test (Alere, San Diego, CA, USA) and were compared between groups. We also examined whether pNGAL level was related to the degree of albuminuria and cystatin C-based glomerular filtration rate (GFR). Results: Mean pNGAL levels of the healthy controls, chronic renal insufficiency patients with diabetes mellitus, and hemodialyzed patients were $61.9{\pm}5.3ng/mL$, $93.4{\pm}71.8ng/mL$, and $1,536.9{\pm}554.9ng/mL$, respectively. pNGAL level increased significantly in patients with severe albuminuria (P <0.001) and had a moderate correlation with the degree of albuminuria (r=0.467; P <0.001) and GFR (r=0.519; P <0.001). Multivariate regression analysis showed that the pNGAL level was associated with tubular damage independent of patient age, sex, and GFR. Conclusions: pNGAL level independently reflects the degree of tubular damage in patients with diabetic nephropathy. Measurement of pNGAL, combined with UAE, would enable simultaneous, highly reliable assessments of tubular damage for such patients.