• Title/Summary/Keyword: laboratory and field tests

Search Result 738, Processing Time 0.026 seconds

Estimation of Slime Thickness of Bored Piles by Using Borehole Electrical Resistivity Method (시추공 전기비저항 기법을 활용한 현장타설말뚝의 슬라임층 두께 평가)

  • Chun, Ok-Hyun;Lee, Jong-Sub;Park, Min-Chul;Bae, Sung-Gyu;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.51-60
    • /
    • 2013
  • The slime, deposited in the bored pile due to falling soil particle, reduces the bearing capacity of bored pile and thus the stability of construction also decreases. The weight pendulum and iron have been used for estimating the slime thickness based on the subjective judgment and thus the previous method has a limitation of reliability. The objective of this paper is to suggest the method for estimating the slime thickness by using characteristics of electrical resistivity as scientific method. The temperature-compensation resistivity probe (TRP), which has a conical shape and the diameter of 35.7mm, is applied to the measurement of the electrical resistivity in the borehole during penetration. The field tests are carried out for estimating the slime thickness in the application site of bored pile. The slime thickness is calculated through the difference between excavation depth of borehole and measured data. Furthermore, the laboratory tests are also conducted for investigating effects of casing, time elapsing and relative density by using the specimen of slime. The laboratory test supporting the suggested method is reasonable for determining the slime depth. The paper suggests that the electrical resistivity method may be a useful method for detecting slime thickness and the method is expected to be applicable to various sites of bored piles.

The Development of Cement Treated Base Material with Restraint Reflection Crack (반사균열을 억제한 시멘트 안정처리 기층 재료개발)

  • Kang, Sung-Cheul;Lee, Kang-Won;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.33-43
    • /
    • 2005
  • This paper describes a new approach to minimize the amount of shrinkage cracking in cement treated base(CTB). CTB is a stiffness base having lots of merits such as higher rutting resistance, minimizing fatigue cracking, and the ability to distribute upper loads. However, It is not applied to asphalt pavement system in Korea because of possible cracks caused by dry shrinkage. The goal of this study is the development of cement treated base with lower shrinkage for preventing reflection cracks and rutting. After identifying factors affecting dry shrinkage and analyzing mechanism of each admixture, the laboratory and field tests were designed and performed. Through the preliminary tests, the mix design containing 25 percent o( fly ash and 7 percent of cement was suggested. This mix design was satisfied with strength for Korea specification standard. According to the results considering strength, shrinkage, and economical efficiency, two mix designs were selected; 1) containing 25 percent of fly ash and 2) containing 25 percent of fly ash with 10 percent of expensive additive. For field test based on the result of laboratory test, the optimized alternative in cement treated base with lower shrinkage was the mix design containing 25 percent of fly ash with 10 percent of expansive additive.

  • PDF

Assessment of Runout Distance of Debris using the Artificial Neural Network (인공신경망을 이용한 사태물질 이동거리 산정)

  • Seo Yong-Seok;Chae Byung-Gon;Kim Won-Young;Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.145-154
    • /
    • 2005
  • This study conducted to develop an assessment method of runout distance of debris flow that is a major type of landslides in Korea. In order to accomplish the objectives, this study performed detailed field survey of runout distance and laboratory soil tests using 24 landslides over three pilot sites. Based on the data of the field survey and the laboratory tests, an assessment method of runout distance was suggested using the artificial neural network. The input data for the analysis of artificial neural network are change rate of slope angle, Permeability coefficient of in-situ soil, dry density, void ratio, volume of debris and the measured runout distance. The analyzed results using the artificial neural network show low error rate of inference distributing lower than $10\%$. Some cases have $5\%$ and $2\%$ of error rates of inferences. The results can be thought as excellent teaming rates. However, it is difficult to be accepted as excellent results if it is considered with the results derived using only 24 landslide data. Therefore, more landslide data should be surveyed and analyzed to increase the confidence in the assessment results.

Evaluation of Absorbing Energy for the Rockfall Protection Fence Using High Carbon Steel Wire Rods (경강선 적용 낙석방지울타리의 흡수에너지 평가)

  • Lee, Yongjoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.49-60
    • /
    • 2009
  • In order to develop a new rockfall protection fence using high carbon steel wire rod (HSWR) material instead of the conventional wire rope material, the author has conducted the laboratory strength tests of both materials and their connections, and carried out evaluation of absorbing rockfall energy through the vertical field rockfall tests. The vertical filed rockfall tests showed that the new rockfall protection fence with 12 rows of the HSWR could absorb more rockfall energy than 50 kJ which stands for the typical design criteria. In addition, when the quantity of HSWR was increased up to the 16 rows, the capacity of absorbing energy was greatly improved. The new rockfall protection fence was successfully applied to the highway rock-cut slope. As a result of the filed application, its constructability was similar to the conventional fence, but its total image was improved as simple and clean. The total construction cost was saved up to 20% in comparison with the conventional one.

  • PDF

The Behaviours of Existing Tunnels in response to Multiple side-by-side Tunnel Construction in Soft Ground (연약지반 다수의 터널 병렬시공 시 기존터널의 거동)

  • Ahn, Sung Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.193-204
    • /
    • 2008
  • This paper describes laboratory experiments modelling multiple tunnel construction in soft ground. A series of small-scale model tests have been conducted at approximately 1/50 scale in order to investigate the behaviours of existing tunnels in response to the construction of new tunnels in close proximity. The model tunnels were constructed in a consolidated Speswhite Kaolin clay using a tunnelling device involving an auger type cutter within a shield. Strain gauges and LVDTs were used for instrumenting the existing tunnels. The findings obtained from the analyses of these tests were compared to the field measurements involving the reconstruction of the Northern Line London Underground Ltd. tunnels at Old street, United Kingdom. The results were also compared to the ground movement measurements obtained from a separate set of tests undertaken using the same apparatus and experimental procedures.

Subhective Symptoms and Work-related Health Risk Factors in Korean Dental Laboratory Technicians (우리 나라 치과 기공사의 신체 자각 증상과 직업 관련 건강 위험 요인)

  • Kim, Woong-Chul;Lee, Se-Hoon
    • Journal of Technologic Dentistry
    • /
    • v.22 no.1
    • /
    • pp.89-112
    • /
    • 2000
  • Although dental laboratory technicians are prone to be exposed to various work-related health hazardous materials such as dusts, chemicals, etc., the prevalence and nature of work-related health problems of them have not been a matter of great concern in the field of occupational health service in Korea. The purpose of the present investigation was to describe a collected profile of subjective health symptoms and their attributable factors in Korean dental laboratory technicians. A questionnaire listing five groups of health symptoms and five health symptom-related factors was mailed to randomly selected 1,900 dental laboratory technicians. Among them, 1,344 dental laboratory technicians filled out the questionnaires and returnde them. Five groups of health symptoms included musculoskeletal symptom, dermal symptoms, respiratory symptoms, eys symptoms, and ear symptoms. Five health symptom-related factors were occupational environment-related health risk factors, work history, health related habits and status, use of personal protective equipment and general characteristics. Detailed parameters of health risk factors were work posture, vibration, and chemical or physical hazards such as dust, fume, vapor, solvent, light, and noise for occupational environment-related factors; work place, area, number of employees, work hours, career, work part, and work load for work history; Broca's index, hours of sleep, eating, smoking, alcohol, exercise, health examination, and self assessed health status for health habits and status; face masks, goggles, and so on for use of personal protective equipment, and; age, sex, marital status, and education for general characteristics. Before the start of main survey, a pilot survey was carried out for validity and reliability tests of the questionnaire. All the data obtained were coded and analyzed with PC/SAS 6.12 program. The prevalence of health symptoms was the highest in musculoskelton (87.3%), and followde by eyes (78.9%), respiratory organs (64.3%), ears (57.8%), and skin (52.2%) in descending order. Statistically significant risk factors by multiple logistic regression analyses were sex, health examination, self assessed health status, and hand/finger posture in musculoskeletal symptoms; sex, self assessed health status, career, acid gas, and hand contact with resin mixture in deraml symptoms; Broka's smoking, exercise, self assessed health status, and face mask in respiratory symptoms; sex, hours of sleep, self assessed health status, work hours, work load, plaster dust, inadequate lighting, and goggle in eys symptoms, and eating, smoking, self assessed health status, and work load in ear symptoms. With the above considerations in mind, prevalence of subjective symptoms among Korean dental laboratory technicians was relatively high, and they were attributable to most of the occupational environment-related factors, work history, use of personal protective equipment, health habits and status, and general characteristics. Particularly, it is suggested that health promotion programs for promoting self- assessed health status and smoking cessation, preventive measures for protection of the female technicians’health, and reducing work load be necessary, since those factors were associated with more than one subjective symptom.

  • PDF

Engineering Characteristics of Slime Generated by Application of Deep Mixing Method (심층혼합공법 적용시 발생하는 슬라임의 공학적 특성)

  • Jun, Sanghyun;Park, Byungsoo;Lee, Haeseung;Yoo, Namjae;Moon, Mansik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.99-103
    • /
    • 2009
  • This research is the result of investigating engineering characteristics of slime generated during construction of deep mixing method. Mechanical characteristics of slime have been studied through literature review and laboratory tests of unconfined compression test, permeability test and settling tests were performed. As result of field observation of slime being generated, slime started to be produced right after flight auger was penetrated into a ground and its amount was increased in progress. Unconfined compressive strength of specimen with slime obtained from in field was measured in the range of $929.7{\sim}3,509.8kN/m^2$ and the value of unconfined compressive strength was found to be changed significantly with mixing ratio of soil, cement and binder. Permeability of them was measured in the range of $4.53{\times}10^{-7}{\sim}6.62{\times}10^{-6}cm/sec$ so that the mixture was appropriate as a impervious barrier. It was also know that the value of permeability was changed with the mixing ratio of binder. As test results of solidifying slime specimen prepared in the laboratory, good quality of cement mixture with coarse soil of sand were produced, compared with fine soils of silt and clay.

  • PDF

Characteristics of Undrained Cyclic Shear Behavior for the Nak-dong River Sand Due to the Aging Effect (Aging 효과에 따른 낙동강 모래의 비배수 반복전단거동 특성)

  • Kim Dae-Man;Kim Young-Su;Jung Sung-Gwan;Seo In-Shik
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.13-26
    • /
    • 2005
  • It was known that the aging effect of sands is insignificant in comparison with clays, and hence the study on this effect had seldom been performed prior to the early 1980s. However, field tests for this effect have been actively carried out since it was investigated that penetration resistance of reformed sands increased with the lapse of time. Recently, the aging effect of sands has also been examined in laboratory testings. In this study, undrained static triaxial tests were performed to evaluate the effect on the Nak-dong River sands, with different .elative densities $(D_r)$, consolidation stress ratios $(K_c)$, and consolidation times. As a result of the tests, it was proved that the undrained cyclic shear strength $(R_f)$ increased with the aged time on the sands. The in situ range of Rf on the sands, which is applicable to the magnitude of earthquake in the Nak-dong River area, was proposed by using the test results.

Model Tests Investigating the Ground Movements Associated with Twin Side-by-Side Tunnel Construction in Clay (점성토 트윈 병렬 터널로 인한 지반침하 연구를 위한 모형실험)

  • Ahn, Sung-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.77-85
    • /
    • 2009
  • This paper describes the findings obtained from a research project aimed at investigating, via 1 g laboratory model tests, the ground movements caused by multiple side-by-side (sbs) tunnel construction in clay. The ground movements above a second tunnel showed different trends from those observed above a first tunnel. These trends include an increase in the overall volume loss, and a widening of the settlement troughs on the near limb of the trough accompanied by a shift of the maximum settlement towards existing tunnel. This would suggest that the use of simple predictive methods of adopting a Gaussian curve for analysing the ground settlements associated with twin (sbs) tunnel construction is not appropriate. Therefore the current paper adopts a method that modifies the Gaussian curve approach in order to improve the predictions. This paper comments on the parameter selection involved with adopting this new method to apply it to full-scale field situations, and also discusses its limitations.

Load Transfer Characteristics of Pile Foundation for Lightweight Pavement in Sand Soil using Laboratory Chamber Test (모형챔버시험을 이용한 사질토 지반의 경량포장체용 기초의 하중전달 특성)

  • Shin, Kwang-Ho;Hwang, Cheol-Bi;Jeon, Sang-Ryeol;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4588-4594
    • /
    • 2014
  • In this study, small scaled (1/30) laboratory chamber tests of the pile foundation for a lightweight concrete pavement system were carried out to evaluate the safety of a pile foundation on sandy soil. The testing ground was simulated in the field and a standard pile-loading test was conducted. The test piles were divided into 3 types, Cases A, B and C, which is the location from the center of the slab by applying a vertical load. The interval between the piles was set to 8 cm. As a result of the pile foundation model test, the pavement settled when the vertical load was increased to 12kg from 1.5kg in sandy soil ground, particularly the maximum settlement of 0.04mm. Judging from the model chamber test, Case A showed compressive deformation, whereas Case B represented the compression and tensile forces with increasing vertical load. Case C showed an increase in tensile strain.