• Title/Summary/Keyword: laboratory and field tests

Search Result 738, Processing Time 0.027 seconds

Tuned mass dampers for human-induced vibration control of the Expo Culture Centre at the World Expo 2010 in Shanghai, China

  • Lu, Xilin;Ding, Kun;Shi, Weixing;Weng, Dagen
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.607-621
    • /
    • 2012
  • The Expo Culture Centre is one of the permanent buildings at the World Expo 2010 in Shanghai, China. The main structure has an oval shape and consists of 36 radial cantilever steel trusses with different lengths and inner frames made of concrete-filled rectangular steel tube members. Tuned mass dampers are used to reduce the excessive vibrations of the sixth floor that are caused by human-induced resonance. A three-dimensional analytical model of the system is developed, and its main characteristics are established. A series of field tests are performed on the structure, and the test results show that the vertical vibration frequencies of most structural cantilevers are between 2.5 Hz and 3.5 Hz, which falls in the range of human-induced vibration. Twelve pairs of tuned mass dampers weighing 115 tons total were installed in the structure to suppress the vibration response of the system. These mass dampers were tuned to the vertical vibration frequency of the structure, which had the highest possibility of excitation. Test data obtained after the installation of the tuned mass dampers are used to evaluate their effectiveness for the reduction of the vibration acceleration. An analytical model of the structure is calibrated according to the measured dynamic characteristics. An analysis of the modified model is performed and the results show that when people walk normally, the structural vibration was low and the tuned mass dampers have no effect, but when people run at the structural vibration frequency, the tuned mass dampers can reduce the floor vibration acceleration by approximately 15%.

Hydraulic Characteristics of Busan Clay in the Floodplain of the Nakdong River Delta (낙동강 삼각주 범람원에서 부산점토의 수리학적 특성)

  • Chung, Seong-Gyo;Lee, Nam-Ki;Lee, Jeong-Man;Min, Se-Chan;Hong, Yang-Pyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.47-61
    • /
    • 2010
  • To predict the settlement rate of a ground area that incorporates vertical drains, it is desirable to conduct various kinds of advanced field and laboratory tests for hydraulic properties. However, it is urgently needed to appropriately evaluate the hydraulic properties using the results of conventional soil tests which are extensively used for local practice. To achieve this purpose, a number of CPT dissipation test, laboratory permeability and consolidation tests were performed at five sites in the floodplain of the Nakdong River delta, and the test data were comprehensively analyzed. As a result, it is found that the coefficients of horizontal consolidation ($C_{h,NC}$) and permeability ($k_{h,OC}$) of the clay agreed well with those of the CPT-based methods proposed by Baligh and Levadoux (1986). The values of $C_{h,NC}$ and $k_{h,OC}$ were in the range of $0.4{\sim}3.0\;cm^2/sec$ and $0.40{\sim}2.50\;cm^2/sec$, each of which slightly increases or decreases with depth, respectively. It was also inferred that these trends seem to reflect the depositional environments of the clay.

Estimating the Soil Volume Conversion Factor of Weathered Ground with Consideration of Field Situations

  • Jin, Kyu-Nam;Cho, Gye-Chun;Lee, Jung-Min;Ryu, Hee-Hwan;Park, Sung-Wook
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.145-155
    • /
    • 2011
  • It is very important for successful construction to estimate the soil volume conversion factor of domestic weathered ground accurately and reasonably. However, it is very difficult to quantify the weathering degree of weathered ground at the field, so that the soil volume conversion factor used in Korea is often dependent upon the standard of foreign countries. Besides, the soil volume conversion factor of domestic weathered ground has been rarely studied and the use and accuracy of the soil volume conversion factor have been questioned persistingly. This study suggests a simple but robust method for estimating the soil volume conversion factor and measuring the weathering degree reasonably, and attempts to establish the utilization of a soil volume conversion factor measurement system based on experimental and analytical results. We made relationship between electrical resistivity and weathering degree presented from weathering index obtained through laboratory tests using field samples, and an estimation method of in-situ weathering degree for granites and a calculation method of soil volume conversion factor using electrical resistivity. And also, we suggested the photogrametry measurement-equipment system for measuring the volume of cargo box and the application plan of stand equipment and RFID for calculating the earth volume and distinguishing buggies in order to design the measurement system for soil volume conversion factor applicable to the field. Ultimately, the Weathered Earth-work Management Program (WEMP) was developed, so field managers may easily obtain the information about earth volume and soil volume conversion factor at the weathered ground.

Performance Verification and Reliability Test of Tunnel Shotcrete Stressmeter (터널 숏크리트 응력계의 성능검증과 신뢰성 시험 연구)

  • Kim, Yeong-Bae;Park, Yeong-Bae;Lee, Seong-Won;Lee, Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.113-126
    • /
    • 2024
  • Shotcrete lining is an important material for the stability of tunnels in NATM tunnels. However, stressmeters for stress measurements of shotcrete lining are installed in the field without performance verification because of a lack of research on methods, procedures, regulations, and reliability of measurement equipment. To solve this problem, all shotcrete stressmeters currently used in Korea were investigated. For each stressmeter, external inspection and structural and functional inspection were performed to identify defects and problems in devices. For this purpose, a shotcrete stressmeter performance test device capable of load loading in stages was developed and obtained KOLAS certification. Using the device, stressmeter performance tests were conducted. Structural problems of integrated- and cell-type shotcrete stressmeters were identified through concrete mold tests, and improvement plans and performance verification procedures were suggested. The results of this study are expected to contribute to the preparation of regulations for the performance verification of shotcrete stressmeters and the selection of measuring instruments in the field in the future.

A Study on the Bahavior and Failure Mechanism of Soil Nailing Walls using Centrifuge Model Tests (원심모형실험을 이용한 소일네일링 벽체의 거동 및 파괴메카니즘에 관한 연구)

  • Kim, Young-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5963-5973
    • /
    • 2011
  • Current design and analyzing methods about soil nailing structures, developed on the basis of results obtained from experiments in laboratory or in field and numerical analyses, have applied different interaction mechanisms between the reinforced nails and the surrounding ground, and different safety factors against failure have been obtained. They might be proper approaches if the assumptions about rigidity of nails and ground conditions are met with actual conditions occurred in field. Otherwise, they would result in designing on analyzing in inappropriate ways so that it is needed to evaluate the validity of them. Therefore, in this research using the Centrifugal Model Testing, numerical parameters experiments about soil nailing structures' behavior and failure mechanism were performed. In the numerical parameters experiments, transmuted nail's length, setting angle, nail's front panel, stiffness variously, and increased the level of gravity until wall model was destroyed. Based on experimental results, we compared the effect, failure mechanism caused from parameters changes. By reviewing and comparing centrifugal model test results and methods currently in use, verified validity of existing methods.

A study on the average wind load characteristics and wind-induced responses of a super-large straight-cone steel cooling tower

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Zhao, L.;Tamura, Y.
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.433-457
    • /
    • 2017
  • As a novel typical wind-sensitive structure, the wind load and wind-induced structural behaviors of super-large straight-cone cooling towers are in an urgent need to be addressed and studied. A super large straight-cone steel cooling tower (189 m high, the highest in Asia) that is under construction in Shanxi Power Plant in China was taken as an example, for which four finite element models corresponding to four structural types: the main drum; main drum + stiffening rings; main drum + stiffening rings + auxiliary rings (auxiliary rings are hinged with the main drum and the ground respectively); and main drum + stiffening rings + auxiliary rings (auxiliary rings are fixed onto the main drum and the ground respectively), were established to compare and analyze the dynamic properties and force transferring paths of different models. After that, CFD method was used to conduct numerical simulation of flow field and mean wind load around the cooling tower. Through field measurements and wind tunnel tests at home and abroad, the reliability of using CFD method for numerical simulation was confirmed. On the basis of this, the surface flow and trail characteristics of the tower at different heights were derived and the wind pressure distribution curves for the internal and external surfaces at different heights of the tower were studied. Finally, based on the calculation results of wind-induced responses of the four models, the effects of stiffening rings, auxiliary rings, and different connecting modes on the dynamic properties and wind-induced responses of the tower structure were derived and analyzed; meanwhile, the effect mechanism of internal suction on such kind of cooling tower was discussed. The study results could provide references to the structure selection and wind resistance design of such type of steel cooling towers.

Development of Engine/Rotor Vibration Analysis and Monitoring System(EVAMOS) for Marine Vessels (선박용 엔진/회전체 진동 분석 및 모니터링 시스템(EVAMOS) 개발에 관하여)

  • Lee, D.C.;Joo, G.S.;Nam, T.K.;Kim, E.S.;Kim, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.331-336
    • /
    • 2008
  • Engine builders have separately developed and applied torsional, axial and structural vibration monitoring system on most marine engines. These systems displayed their results for engine or ship operation engineers and were not regularly stored at the hardware of computer. So, tile history and trend of various engine and hull vibrations was not supported for preventive maintenance and to protect the failure of these activity or function. The integrated vibration or stress monitoring system(EVAMOS : Engine/Rotor Analysis and monitoring System) in marine diesel engine, its machineries and hull have been developed by the dynamics laboratory of Mokpo Maritime University during last 3 years. This paper introduces tile design conception and ability of commercial software EVAMOS with field data on several actual tests.

  • PDF

Embedded type new in-situ soil stiffness assessment and monitoring technique

  • Namsun Kim;Jong-Sub Lee;Younggeun Yoo;Jinwook Kim;Junghee Park
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • We aimed to assess the evolution of small-strain stiffness and relative density in non-compacted embankment layers. We developed embedded type in-situ soil stiffness measurement devices for monitoring small-strain stiffness occurring after filling at a test site and conducted comprehensive laboratory compaction tests using an oedometer cell with a bender element. However, direct comparison is extremely difficult because the shear wave velocity measured in the field and laboratory depend on depth and effective stress, respectively. Therefore, we propose a method for establishing a relationship between effective stress and depth using a compressibility model. In this study, the shear wave velocity measured in the field was compared to the estimated shear wave velocity-depth profiles for completely dry and saturated conditions with different relative densities. The relative density under saturated soil conditions may vary between 50% and 90% and tends to be closer to 95%. Under dry soil conditions, the relative density of the embankment can vary from 30% to 70% and tends to approach 76%. For model validation, the relative density estimated from shear wave velocity-depth profiles was compared to that estimated from DCPI data. In other words, the results analyzed in the context of an effective stress-depth model enable the prediction of engineering properties such as the small-strain stiffness and relative density of embankment layers. This study demonstrates that physics-based data analyses successfully capture the relative density of non-compacted embankment layers.

SHM by DOFS in civil engineering: a review

  • Rodriguez, Gerardo;Casas, Joan R.;Villalba, Sergi
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.4
    • /
    • pp.357-382
    • /
    • 2015
  • This paper provides an overview of the use of different Distributed Optical Fiber Sensor systems (DOFSs) to perform Structural Health Monitoring (SHM) in the specific case of civil engineering structures. Nowadays, there are several methods available for extracting distributed measurements from optical fiber, and their use have to be according with the aims of the SHM performance. The continuous-in-space data is the common advantage of the different DOFSs over other conventional health monitoring systems and, depending on the particular characteristics of each DOFS, a global and/or local health structural evaluation is possible with different accuracy. Firstly, the fundamentals of different DOFSs and their principal advantages and disadvantages are presented. Then, laboratory and field tests using different DOFSs systems to measure strain in structural elements and civil structures are presented and discussed. Finally, based on the current applications, conclusions and future trends of DOFSs in SHM in civil structures are proposed.

A Microcomputer-Based Data Acquisition/Control System for Engine Performance Test(II) -Construction and Evaluation of a Load Simulation System- (마이크로컴퓨터를 이용(利用)한 엔진 성능시험(性能試験)의 자동화(自動化)에 관한 연구(硏究)(II) -모의(模擬) 부하시험(負荷試験) 시스템의 구성(構成) 및 평가(評價)-)

  • Ryu, K.H.;Bae, Y.H.;Yoon, K.J.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 1989
  • This study was carried out to develop a system and methodology to simulate the engine load variation occuring during agricultural field operations for a laboratory engine test. The system consisted of an electric dynamometer, an Apple II microcomputer, and a data acquisition and control system. Several pieces of instruments were utilized to measure various engine performance data. Both engine torque and engine speed were fully controlled by a computer program. The dynamic characteristics of the system were analyzed through a series of tests and the limitations on the load simulation test were presented. The results of the study are summarized as follows: 1. Engine speed and toque were controlled by a computer program. The use of a stepping motor and reduction gears enabled engine speed be controlled within 1 rpm. 2. The natural frequency of the dynamometer-engine system was found to be around 5 Hz, at which the load simulation would be impossible because of resonance. 3. For the harmonic inputs with the frequencies above the natural frequency, the signal attenuated too much and therefore the load simulation was impossible. 4. The step response of the system showed an overshoot of 24.5 percent and the settling time for 5 percent criterion was around 3 seconds. 5. When actual field test data are utilized for load simulation, a low-pass filter should be included to attenuate the frequency components around and above the natural frequency.

  • PDF