• Title/Summary/Keyword: laboratory and field tests

Search Result 738, Processing Time 0.025 seconds

Influence of electrode geometry on electrical resistivity survey: Numerical study (전극의 기하학적 형상이 전기비저항 탐사에 미치는 영향: 수치 해석 연구)

  • Tae-Young Kim;Seung-Hun Lee;Hee-Hwan Ryu;Song-Hun Chong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.101-120
    • /
    • 2023
  • Electrical resistivity survey have been widely conducted at diverse scales, from a few centimeters for laboratory tests to kilometers for field tests. It measures electrical resistance through relationship of electric potential difference and current between two electrodes penetrated on the surface of medium, and eventually quantifies electrical resistivity known as inherent properties of the medium. In field or full-scale test, it assumes the electrodes as equivalent half-sphere electrodes that have a same surface area with different electrodes for ease of calculation because the contact area between electrode and medium is small and sufficient distance between two electrodes. However, small-scale laboratory test is significantly affected by the electrode geometries (penetrated depth, height, radius of electrode and distance between electrodes), which change the equipotential surface and electric current flow. Indeed, the electrode geometries may eventually cause a difference of electrical resistivity value. This study reviews the theoretical electrical resistance derived with various electrode geometries (half-sphere, cylinder, cylindrical with half-spherical tip, cylindrical with conical tip) and verifies the developed numerical module by comparing results with the theoretical electrical resistance. The distributions of electrical resistance around electrodes and among electrodes are analyzed. In addition, it is discussed how the electrical characteristic of cylindrical electrode with conical tip widely used in field test has effect on the electric current flow.

Analysis and performance of offshore platforms in hurricanes

  • Kareem, Ahsan;Kijewski, Tracy;Smith, Charles E.
    • Wind and Structures
    • /
    • v.2 no.1
    • /
    • pp.1-23
    • /
    • 1999
  • Wind effects are critical considerations in the design of topside structures, overall structural systems, or both, depending on the water depth and type of offshore platform. The reliable design of these facilities for oil fields in regions of hostile environment can only be assured through better understanding of the environmental load effects and enhanced response prediction capabilities. This paper summarizes the analysis and performance of offshore platforms under extreme wind loads, including the quantification of wind load effects with focus on wind field characteristics, steady and unsteady loads, gust loading factors, application of wind tunnel tests, and the provisions of the American Petroleum Institute Recommended Practice 2A - Working Stress Design (API RP 2A-WSD) for the construction of offshore structures under the action of wind. A survey of the performance of platforms and satellite structures is provided, and failure mechanisms concerning different damage scenarios during Hurricane Andrew are examined. Guidelines and provisions for improving analysis and design of structures are addressed.

Relationship between Stiffness and Shear Strength of Normally Consolidated Clay using Triaxial Compression Tests and Shear Wave Measurements (삼축압축시험과 전단파 계측을 이용한 정규압밀 점성토의 강성도와 전단강도의 상관관계)

  • Oh, Sang-Hoon;Kim, Hak-Sung;Kim, Eun-Jung;Park, In-Beom;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1124-1131
    • /
    • 2008
  • Thanks to a new in-situ seismic probe, using bender elements and penetration scheme, a simple linear relationship between undrained shear strength(Cu) and shear wave velocity(Vs) was obtained. This priceless relationship is worthy to be illuminated further in ideal laboratory environment. To avoid sampling disturbance effect, special consolidation cylinders were used to make normally consolidated specimens from kaolinite suspension. The undrained shear strengths of the specimens were measured using unconsolidated undrained triaxial compression tests. Also shear wave velocity measurements were performedprior to shearing the same specimens, using the bender elements installed in the base pedestal and the top cap of the triaxial compression cell. The Cu-Vs relationship is fairly linear and supports the linear trend of clayey silt obtained using field testing. Also the classic density-shear modulus relationship for soft clay proposed by Hardin and Black(1969) was once more verified hereby.

  • PDF

The Effects of Sample Disturbance on Undrained Properties of Yangsan Clay (양산점토의 비배수 특성에 대한 시료교란의 효과)

  • 김길수;임형덕;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.639-646
    • /
    • 2000
  • It is important to estimate the mechanical properties of clay since it is directly related to the design and the construction of geotechnical structures. Site exploration, which is composed of boring, sampling, in-situ, or laboratory tests, is preformed to estimate the mechanical properties. However, mechanical properties of clay measured from laboratory test may be different from in-situ properties due to disturbances occurred during sampling, transportation, storage, and trimming. In this study, the degree of disturbance according to sampling method was estimated with the test results of CK/sub o/U triaxial compression test on Yangsan clay. The soil samples were obtained by three types of sampling method, j.e., 76mm-tube sampler, 76mm-piston sampler, and block sampler. In order to evaluate the quality of samples, volumetric strain, undrained shear strength, secant Young's modulus, and pore pressure coefficient at peak measured from each sample were compared with one another. From the test results, it was observed that mechanical properties of the block and piston samples were more reliable than those of tube samples. But it was observed that the water content of piston was similar to that of tube samples at given depths while the water content of block samples was 14.3∼15.8% smaller than that of piston and tube samples. In addition to the evaluation of the quality of samples, relationship between c/sub u// σ/sub vc/'and OCR was established from the results of the CK/sub o/U triaxial compression tests, which were carried out using SHANSEP method. And also undrained shear strength was analyzed using the in-situ test data such as Cone Penetration Test(CPT), Dilatometer Test(DMT), and Field Vane Test(FVT) and was compared with that evaluated from CK/sub o/U triaxial compression test.

  • PDF

Modeling of cyclic joint shear deformation contributions in RC beam-column connections to overall frame behavior

  • Shin, Myoungsu;LaFave, James M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.645-669
    • /
    • 2004
  • In seismic analysis of moment-resisting frames, beam-column connections are often modeled with rigid joint zones. However, it has been demonstrated that, in ductile reinforced concrete (RC) moment-resisting frames designed based on current codes (to say nothing of older non-ductile frames), the joint zones are in fact not rigid, but rather undergo significant shear deformations that contribute greatly to global drift. Therefore, the "rigid joint" assumption may result in misinterpretation of the global performance characteristics of frames and could consequently lead to miscalculation of strength and ductility demands on constituent frame members. The primary objective of this paper is to propose a rational method for estimating the hysteretic joint shear behavior of RC connections and for incorporating this behavior into frame analysis. The authors tested four RC edge beam-column-slab connection subassemblies subjected to earthquake-type lateral loading; hysteretic joint shear behavior is investigated based on these tests and other laboratory tests reported in the literature. An analytical scheme employing the modified compression field theory (MCFT) is developed to approximate joint shear stress vs. joint shear strain response. A connection model capable of explicitly considering hysteretic joint shear behavior is then formulated for nonlinear structural analysis. In the model, a joint is represented by rigid elements located along the joint edges and nonlinear rotational springs embedded in one of the four hinges linking adjacent rigid elements. The connection model is able to well represent the experimental hysteretic joint shear behavior and overall load-displacement response of connection subassemblies.

Effectiveness of Reinforcement by Geogrid & Pile in Soft Clay (지오그리드와 말뚝에 의한 연약지반 보강효과)

  • 신은철;이상혁;이명원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.61-69
    • /
    • 2000
  • It is not easy to find a good soil condition due to the shortage of suitable land for construction work. The earth structure and buildings can be constructed over the soft soil. The soft soil must be treated either using the reinforcement element or dewatering. Most of land reclamation projects are being implemented along the south coast or west coast of the Korean Peninsula. The soils in these areas are covered with the soft marine clay, so soil and site improvement is the most important things to do. Pile foundation at the bottom of embankment can be constructed either in the soft ground or in the soil contaminated area. The purpose of this research is to develop "geogrid-reinforced piled embankment method" to prevent the differential settlement and increase the bearing capacity of soil. In this study, the effectiveness of the geogrid-reinforcement was studied by varying the space between piles and reinforcement conditions. Also, the geotechnical engineering properties of the embankment material and foundation soil were determined through the laboratory tests as well as the field tests. As a result, the site that the pile-spacing S = 3b with geogrid reinforcement is the most effective to reduce the differential settlement and increase load bearing capacity.

  • PDF

A Study on the Deformation Behavior of Nonwoven Geotextiles Reinforced Soil Walls Based on Literature Reviews (문헌조사에 근거한 부직포 보강토옹벽의 거동에 관한 연구)

  • Won, Myoung-Soo;Kim, Tae-Wan;Roh, Jae-Kune;Kim, Hyoung-Wan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.21-30
    • /
    • 2010
  • To understand the deformation behavior of nonwoven geotextiles(NWGT) reinforced soil wall, analyses of load-elongation properties, soil-reinforcement interface friction, laboratory model tests, and field cases throughout literature reviews are being studied in this paper. According to the analyses results, the stiffness and tensile strength of NWGT is increased in proportion to confinement pressures, and the interface shear strength at soil-NWGT appeared to be stronger than soil-geogrid interface. The deformation at the beginning of loading on NWGT reinforced soil wall is larger than geogrid reinforced soil wall, but the wall deformation with NWGT is smaller than the wall of geogrid after passing some loading point in laboratory model tests. Case analysis results have shown that the facing of NWGT reinforced soil wall should be rigid enough to be used as a permanent wall, and NWGT and in-situ poor soil can be used for reinforcement and backfill respectively if the wall is constructed as pre-reinforced soil body and with post-facing that has a full-height rigid concrete.

  • PDF

Image-based structural dynamic displacement measurement using different multi-object tracking algorithms

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.935-956
    • /
    • 2016
  • With the help of advanced image acquisition and processing technology, the vision-based measurement methods have been broadly applied to implement the structural monitoring and condition identification of civil engineering structures. Many noncontact approaches enabled by different digital image processing algorithms are developed to overcome the problems in conventional structural dynamic displacement measurement. This paper presents three kinds of image processing algorithms for structural dynamic displacement measurement, i.e., the grayscale pattern matching (GPM) algorithm, the color pattern matching (CPM) algorithm, and the mean shift tracking (MST) algorithm. A vision-based system programmed with the three image processing algorithms is developed for multi-point structural dynamic displacement measurement. The dynamic displacement time histories of multiple vision points are simultaneously measured by the vision-based system and the magnetostrictive displacement sensor (MDS) during the laboratory shaking table tests of a three-story steel frame model. The comparative analysis results indicate that the developed vision-based system exhibits excellent performance in structural dynamic displacement measurement by use of the three different image processing algorithms. The field application experiments are also carried out on an arch bridge for the measurement of displacement influence lines during the loading tests to validate the effectiveness of the vision-based system.

Effectiveness of Photocatalytic Techniques for Disinfection of Indoor Bioaerosols (실내 미생물 입자 살균을 위한 광촉매 기술의 효율)

  • Shin, Seoung-Ho;Kim, Mo-Geun;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.785-791
    • /
    • 2007
  • The current study evaluated the technical feasibility of the application of titanium dioxide ($TiO_{2}$) photo-catalytic air cleaners for the disinfection of bioaerosols present in indoor air. The evaluation included both laboratory and field tests and the tests of hydraulic diameter (HD) and lamp type (LT). Disinfection efficiency of photocatalytic oxidation (PCO) technique was estimated by survival ratio of bacteria or fungi calculated from the number of viable cells which form colonies on the nutrient agar plates. It was suggested that the reactor coating with $TiO_{2}$ did not enhance the adsorption of bioaerosols, and that the UV irradiation has certain extent of disinfection efficiency. The disinfection efficiency increased as HD decreased, most likely due to the decrease in the light intensity since the distance of the catalyst from the light source increased when increasing the HD. It was further suggested that the mass transfer effects were not as important as the light intensity effects on the PCO disinfection efficiency of bioaerosols. Germicidal lamp was superior to the black lamp for the disinfection of airborne bacteria and fungi, which is supported by the finding that the disinfection efficiencies were higher when the germicidal lamp was used compared to the black lamp in the laboratory test. These findings, combined with operational attributes such as a low pressure drop across the reactor and ambient temperature operation, can make the PCO reactor a possible tool in the effort to improve indoor bioaerosol levels.

The Evaluations of Fish Survival Rate and Fish Movements using the Tagging Monitoring Approach of Passive Integrated Transponders (PIT) (수동형 전자발신장치(Passive Integrated Transponder, PIT) 모니터링 기법 적용에 따른 어종별 생존율 평가 및 어도에서 어류이동성 평가)

  • Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1495-1505
    • /
    • 2014
  • The objective of this study was to evaluate survival rate and fish movement (migration) using a tagging approach of passive integrated transponder (PIT) in Juksan Weir, which was constructed as a four major river restoration projects. For this study, survival rates of each fish species and the mobility of fish individuals were analyzed during 2 weeks by the insertion of PIT tags to various fish species in the laboratory. According to tagging tests in the laboratory, the survival rate 37.5% (30 survivals of 80 individuals) after the insertion of PIT tags. The survival rate of Carassius auratus and Hemibarbus labeo was 100% and 80% after the insertion of the tags, respectively, whereas it was only 13.3% for Zacco platypus. In the field experiments of Juksan Weir, 6 species and 157 individuals from 8 species (563 individuals) were detected in the fixed automatic data-logging system, indicating a detection rate of 27.9% in the fishway of Juksan Weir. In the meantime, some species with no or low detection rates in the fixed automatic data-logging system were turn out to be stagnant-type species, which prefer stagnant or standing water to live.