• Title/Summary/Keyword: l6S rDNA

Search Result 209, Processing Time 0.024 seconds

Characterization of Microorganisms in Eoyukjang (어육장의 미생물학적 특성)

  • Oh, Eu-Jin;Oh, Mi-Hwa;Lee, Jong-Mee;Cho, Mi-Sook;Oh, Sang-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.656-660
    • /
    • 2008
  • Fermented soybean foods are an important component of the Korean diet. Eoyukjang is a type of traditional fermented soybean source. Microbial analysis of eoyukjang was conducted during the fermentation period in this study. Microorganisms isolated from eoyukjang were identified by biochemical tests and 16S rDNA sequencing. 17 different microorganisms, including bacteria, yeast, and fungi were detected in eoyukjang during the fermentation period. Even though Aspergillus participated in the early stage of fermentation of eoyukjang, Bacillus species and Saccharomyces cerevisiae were the major microzymes in eoyukjang throughout the maturation period. Eoyukjang is generally consumed after the boiling of the final sample. Therefore, the final sample of eoyukjang was boiled and analyzed. Our results showed that no vegetative microorganisms survived under the boiling conditions for eoyukjang. Fermented soybean products in the domestic market were also assessed for comparison with the results from eoyukjang. The total cell number of kanjang (soy sauce) samples was between 0 to 42 CFU/mL. The isolated microorganisms were identified as Bacillus species. All Bacillus isolates were not found to harbor the three enterotoxin-producing and emetic toxin-producing genes.

AGL gene mutation and clinical features in Korean patients with glycogen storage disease type III (한국인 제3형 당원병 환자의 임상상 및 AGL 유전자형)

  • Ko, Jung Min;Lee, Jung Hyun;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.6 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • Purpose: Glycogen storage disease type III (GSD-III), is a rare autosomal recessive disorder of glycogen metabolism. The affected enzyme is amylo-1,6-glucosidase, 4-alpha-glucanotransferase (AGL, glycogen debranching enzyme), which is responsible for the debranching of the glycogen molecule during catabolism. The disease has been demonstrated to show clinical and biochemical heterogeneity, reflecting the genotype-phenotype heterogeneity among different patients. In this study, we analyzed mutations of the AGL gene in three unrelated Korean GSD-III patients and discussed their clinical and laboratory implications. Methods: We studied three GSD-III patients and the clinical features were characterized. Sequence analysis of 35exons and part exon-intron boundaries of the AGLgene in patients were carried out by direct DNA sequencing method using genomic DNA isolated from patients' peripheral leukocytes. Results: The clinical features included hepatomegaly (in all patients), seizures (in patient 2), growth failure (in patients 1), hyperlipidemia (in patients 1 and 3), raised transaminases and creatinine kinase concentrations (in all patients) and mild EKG abnormalities (in patients 2). Liver transplantation was performed in patient 2due to progressive hepatic fibrosis. Administration of raw-corn-starch could maintain normoglycemia and improve the condition. DNA sequence analysis revealed mutations in 5 out of 6 alleles. Patient 1 was a compound heterozygote of c.1282 G>A (p.R428K) and c.1306delA (p.S603PfsX6), patient 2 with c.1510_1511insT (p.Y504LfsX10), and patient 3 with c.3416 T>C (p.L1139P) and c.l735+1 G>T (Y538_R578delfsX4) mutations. Except R428K mutation, 4 other mutations identified in3 patients were novel. Conclusion: GSD-III patients have variable phenotypic characteristics resembling GSD-Ia. The molecular defects in the AGL gene of Korean GSD-III patients were genetically heterogeneous.

  • PDF

Bacterial Hash Function Using DNA-Based XOR Logic Reveals Unexpected Behavior of the LuxR Promoter

  • Pearson, Brianna;Lau, Kin H.;Allen, Alicia;Barron, James;Cool, Robert;Davis, Kelly;DeLoache, Will;Feeney, Erin;Gordon, Andrew;Igo, John;Lewis, Aaron;Muscalino, Kristi;Parra, Madeline;Penumetcha, Pallavi;Rinker, Victoria G.;Roland, Karlesha;Zhu, Xiao;Poet, Jeffrey L.;Eckdahl, Todd T.;Heyer, Laurie J.;Campbell, A. Malcolm
    • Interdisciplinary Bio Central
    • /
    • v.3 no.3
    • /
    • pp.10.1-10.8
    • /
    • 2011
  • Introduction: Hash functions are computer algorithms that protect information and secure transactions. In response to the NIST's "International Call for Hash Function", we developed a biological hash function using the computing capabilities of bacteria. We designed a DNA-based XOR logic gate that allows bacterial colonies arranged in a series on an agar plate to perform hash function calculations. Results and Discussion: In order to provide each colony with adequate time to process inputs and perform XOR logic, we designed and successfully demonstrated a system for time-delayed bacterial growth. Our system is based on the diffusion of ${\ss}$-lactamase, resulting in destruction of ampicillin. Our DNA-based XOR logic gate design is based on the op-position of two promoters. Our results showed that $P_{lux}$ and $P_{OmpC}$ functioned as expected individually, but $P_{lux}$ did not behave as expected in the XOR construct. Our data showed that, contrary to literature reports, the $P_{lux}$ promoter is bidirectional. In the absence of the 3OC6 inducer, the LuxR activator can bind to the $P_{lux}$ promoter and induce backwards transcription. Conclusion and Prospects: Our system of time delayed bacterial growth allows for the successive processing of a bacterial hash function, and is expected to have utility in other synthetic biology applications. While testing our DNA-based XOR logic gate, we uncovered a novel function of $P_{lux}$. In the absence of autoinducer 3OC6, LuxR binds to $P_{lux}$ and activates backwards transcription. This result advances basic research and has important implications for the widespread use of the $P_{lux}$ promoter.

Microbial Community Profiling in cis- and trans-Dichloroethene Enrichment Systems Using Denaturing Gradient Gel Electrophoresis

  • Olaniran, Ademola O.;Stafford, William H.L.;Cowan, Don A.;Pillay, Dorsamy;Pillay, Balakrishna
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.560-570
    • /
    • 2007
  • The effective and accurate assessment of the total microbial community diversity is one of the primary challenges in modem microbial ecology, especially for the detection and characterization of unculturable populations and populations with a low abundance. Accordingly, this study was undertaken to investigate the diversity of the microbial community during the biodegradation of cis- and trans-dichloroethenes in soil and wastewater enrichment cultures. Community profiling using PCR targeting the l6S rRNA gene and denaturing gradient gel electrophoresis (PCR-DGGE) revealed an alteration in the bacterial community profiles with time. Exposure to cis- and trans-dichloroethenes led to the disappearance of certain genospecies that were initially observed in the untreated samples. A cluster analysis of the bacterial DGGE community profiles at various sampling times during the degradation process indicated that the community profile became stable after day 10 of the enrichment. DNA sequencing and phylogenetic analysis of selected DGGE bands revealed that the genera Acinetobacter, Pseudomonas, Bacillus, Comamonas, and Arthrobacter, plus several other important uncultured bacterial phylotypes, dominated the enrichment cultures. Thus, the identified dominant phylotypes may play an important role in the degradation of cis- and trans-dichloroethenes.

Identification and Fermentation Characteristics of Lactic Acid Bacteria Isolated from the Fermentation Broth of Korean Traditional Liquor, Andong-Soju (안동소주 발효액으로부터 분리한 젖산 세균의 동정 및 발효 특성)

  • Bae, Kyung-Hwa;Shin, Kee-Sun;Ryu, Hee-Young;Kwon, Chong-Suk;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.310-315
    • /
    • 2007
  • To investigate the effect of lactic acid bacteria in Andong-Soju fermentation and traditional nuruk maturation, several lactic acid bacteria were isolated from the Andong-Soju fermentation broth and traditionally matured nuruks using Lactobacilli MRS agar containing bromocresol purple. Among the isolated bacteria, ADS-L1 showed the highest lactic acid production and was dominant species in fermentation broth. Based on physiological characteristics and 16S rDNA sequencing results, the ADS-L1 was identified as Pediococcus acidilactici. The ADS-L1 grew well at $50^{\circ}C$, and under the acidic conditions at pH 4, whereas the ADS-L1 failed to grew by treatments of 12% (w/v) ethanol or 0.01N HCl. Considering the high temperature of nuruk above $50^{\circ}C$ during nuruk maturation and the high ethanol concentration of broth above 12% at the end-stage of Andong-Soju fermentation, these results suggested that the ADS-L1 is popular in matured nuruks and plays role in the early-stage of fermentation. Analysis of pH, brix, reducing sugar content, lactic acid production, and cell growth during the cultivation of ADS-L1 further suggested that the ADS-L1 may contribute the prevention of contamination by rapid and steady acidification of broth, and do not cause problems by rapid death at the end-stage of fermentation.

Optimization of Physical Factor for amylase Production by Arthrobacter sp. by Response Surface Methodology (반응표면분석법을 통한 Arthrobacter sp.의 amylase 생산 최적화)

  • Kim, Hyun-do;Im, Young-kum;Choi, Jong-il;Han, Se Jong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.140-144
    • /
    • 2016
  • In this study, the physical factors for amylase production by Arthrobacter sp. were optimized using response surface methodology(RSM). Antarctic microorganism Arthrobacter sp. PAMC 27388 was obtained from the Polar and Alpine Microbial Collection(PAMC) at the Korea Polar Research Institute. This microorganism was confirmed for the excretion of amylase with Lugol's solution. The amylase activity was after flask culture was as low as 1.66 mU/L before optimization. The physical factors including the inoculum volume, the initial culture pH, and the medium volume were chosen to be optimized for the enhanced amylase production. The calculated results using RSM indicate that the optimal physical factors were 2.49 mL inoculum volume, 6.85 pH and 42.87 mL medium volume with a predicted amylase production of 2.84 mU/L. The experimentally obtained amylase activity was 2.50 mU/L, which was a 150% increase compared to the level before optimization.

Isolation and Identification of a Photosynthetic Bacterium Containing a High Content of Coenzyme Q10

  • Jeong, Soo-Kyoung;Ahn, Soon-Cheol;Kong, In-Soo;Kim, Joong-Kyun
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.3
    • /
    • pp.172-176
    • /
    • 2008
  • To develop a potent strain for the production of coenzyme $Q_{10}$, a photosynthetic bacterium was isolated from silt of the Nakdong River in Korea. Using l6S-rDNA sequence analysis, the isolated strain was identified as Rhodobacter sphaeroides. A stable improvement in its $CoQ_{10}$ content was achieved by chemical mutation, upon which the content of $CoQ_{10}$(2.94 mg/g dry cell) was increased by approximately 1.9-fold, comparable to that of R. sphaeroides reported in other studies. The isolate is a potentially valuable microorganism for mass production of $CoQ_{10}$, and may provide an appropriate model for further study of economical mass production.

Genetic Differentiation between Sheep and Goats Based on Microsatellite DNA

  • Sun, W.;Chang, H.;Ren, Z.J.;Yang, Z.P.;Geng, R.Q.;Lu, S.X.;Du, L.;Tsunoda, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.5
    • /
    • pp.583-587
    • /
    • 2004
  • The 7 sheep microsatellite markersOarFCB48, OarAE101, MAF33, OarFCB11, MAF70, OarFCB304 and OarFCB128, which were located on chromosomes 2, 4, 6, 9, 17 and 19, were selected to PCR in Hu sheep, Tong sheep and their closely related species,the goat. They were studied with the amplifying result of 7 microsatellite sites of Hu Sheep, Tong Sheep and goats, the data of allele number and range of allele' size of amplifying were analyzed with ANOVA. The results showed that there were no significant differences (p<0.05) in microsatellite DNA sites among 3 populations. Concerning the conservation of microsatellites in closely related species, selecting microsatellite sites located on the chromosome where the Robertsonian fusion was caused between sheep and goat, may be used in research into genetic differentiation and evolutionary relationships between sheep and goats.

Diversity Analysis of Diazotrophic Bacteria Associated with the Roots of Tea (Camellia sinensis (L.) O. Kuntze)

  • Arvind, Gulati;Sood, Swati;Rahi, Praveen;Thakur, Rishu;Chauhan, Sunita;Nee Chadha, Isha Chawla
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.545-555
    • /
    • 2011
  • The diversity elucidation by amplified ribosomal DNA restriction analysis and 16S rDNA sequencing of 96 associative diazotrophs, isolated from the feeder roots of tea on enriched nitrogen-free semisolid media, revealed the predominance of Gram-positive over Gram-negative bacteria within the Kangra valley in Himachal Pradesh, India. The Gram-positive bacteria observed belong to two taxonomic groupings; Firmicutes, including the genera Bacillus and Paenibacillus; and Actinobacteria, represented by the genus Microbacterium. The Gram-negative bacteria included ${\alpha}$-Proteobacteria genera Brevundimonas, Rhizobium, and Mesorhizobium; ${\gamma}$-Proteobacteria genera Pseudomonas and Stenotrophomonas; and ${\beta}$-Proteobacteria genera Azospira, Burkholderia, Delftia, Herbaspirillum and Ralstonia. The low level of similarity of two isolates, with the type strains Paenibacillus xinjiangensis and Mesorhizobium albiziae, suggests the possibility of raising species novum. The bacterial strains of different phylogenetic groups exhibited distinct carbon-source utilization patterns and fatty acid methyl ester profiles. The strains differed in their nitrogenase activities with relatively high activity seen in the Gramnegative strains exhibiting the highest similarity to Azospira oryzae, Delftia lacustris and Herbaspirillum huttiense.

Bacillus ginsengihumi sp. nov., a Novel Species Isolated from Soil of a Ginseng Field in Pocheon Province, South Korea

  • Ten Leonid N.;Im Wan-Taek;Baek Sang-Hoon;Lee, Jung-Sook;Oh, Hee-Mock;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1554-1560
    • /
    • 2006
  • A Gram-positive, aerobic or facultative anaerobic, non motile, endospore-forming bacterial strain, designated Gsoil $114^T$, was isolated from a soil sample of a ginseng field in Pocheon Province (South Korea), and was characterized taxonomically by using a polyphasic approach. It grew well on nutrient agar medium and utilized a limited number of organic substrates as sole carbon sources, including D-xylose and some other carbohydrates, but did not utilize L-amino acids and organic acids. The isolate was positive for oxidase test but negative for catalase, and negative for degradation of macromolecules such as starch, cellulose, xylan, casein, chitin, and DNA. The G+C content of the genomic DNA was 41.8 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major fatty acids were $anteiso-C_{15:0}$ (32.1%), $iso-C_{15:0}$ (30.5%), and $anteiso-C_{17:0}$ (30.2%). Comparative 16S rRNA gene sequence analysis showed that strain Gsoil $114^T$ fell within the radiation of the cluster comprising Bacillus species and joined Bacillus shackletonii LMG $18435^T$ with a bootstrap value of 95%. The highest 16S rRNA gene sequence similarities were found with Bacillus shackletonii LMG $18435^T$ (97.6%), Bacillus acidicola DSM $14745^T$ (96.9%), Bacillus sporothermodurans DSM $10599^T$ (96.5%), and Bacillus oleronius DSM $9356^T$ (96.5%). The phylogenetic distance from any other validly described species within the genus Bacillus was less than 96%. DNA-DNA hybridization experiments showed that the DNA-similarities between strain Gsoil $114^T$ and closest phylogenetic neighbors were less than 39%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil $114^T$ (=KCTC $13944^T$=DSMZ $18134^T$) was classified in the genus Bacillus as the type strain of a novel species, for which the name Bacillus ginsengihumi sp. nov. is proposed.