• 제목/요약/키워드: l-axial distribution

검색결과 51건 처리시간 0.024초

순간중심 고정식 및 이동식 인공디스크 적용에 대한 유한요소 모델을 이용한 생체역학적 분석 (Biomechanical Analysis of the Implanted Constrained and Unconstrained ICR Types of Artificial Disc using FE Model)

  • 윤상석;정상기;김영은
    • 한국정밀공학회지
    • /
    • 제23권4호
    • /
    • pp.176-182
    • /
    • 2006
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical changes with its implantation were rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, a nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Biomechanical analysis was performed for two different types of artificial disc having constrained and unconstrained instant center of rotation(ICR), ProDisc and SB Charite III model. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, forces on the spinal ligaments and facet joint, and stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400N were compared. The implanted model showed increased flexion-extension range of motion compared to that of intact model. Under 6Nm moment, the range of motion were 140%, 170% and 200% of intact in SB Charite III model and 133%, 137%, and 138% in ProDisc model. The increased stress distribution on vertebral endplate for implanted cases could be able to explain the heterotopic ossification around vertebral body in clinical observation. As a result of this study, it is obvious that implanted segment with artificial disc suffers from increased motion and stress that can result in accelerated degenerated change of surrounding structure. Unconstrained ICR model showed increased in motion but less stress in the implanted segment than constrained model.

Experimental seismic behaviour of L-CFST column to H-beam connections

  • Zhang, Wang;Chen, Zhihua;Xiong, Qingqing;Zhou, Ting;Rong, Xian;Du, Yansheng
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.793-808
    • /
    • 2018
  • In this study, the seismic performance of the connections between L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) and H-beams used in high-rise steel frame structures was investigated. Seven full-scale specimens were tested under quasi-static cyclic loading. The variables studied in the tests included the joint type, the axial compression ratio, the presence of concrete, the width-to-thickness ratio and the internal extension length of the side plates. The hysteretic response, strength degradation, stiffness degradation, ductility, plastic rotation capacity, energy dissipation capacity and the strain distribution were evaluated at different load cycles. The test results indicated that both the corner and exterior joint specimens failed due to local buckling and crack within the beam flange adjacent to the end of the side plates. However, the failure modes of the interior joint specimens primarily included local buckling and crack at the end plates and curved corners of the beam flange. A design method was proposed for the flexural capacity of the end plate connection in the interior joint. Good agreement was observed between the theoretical and test results of both the yield and ultimate flexural capacity of the end plate connection.

Theoretical models of threshold stress intensity factor and critical hydride length for delayed hydride cracking considering thermal stresses

  • Zhang, Jingyu;Zhu, Jiacheng;Ding, Shurong;Chen, Liang;Li, Wenjie;Pang, Hua
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1138-1147
    • /
    • 2018
  • Delayed hydride cracking (DHC) is an important failure mechanism for Zircaloy tubes in the demanding environment of nuclear reactors. The threshold stress intensity factor, $K_{IH}$, and critical hydride length, $l_C$, are important parameters to evaluate DHC. Theoretical models of them are developed for Zircaloy tubes undergoing non-homogenous temperature loading, with new stress distributions ahead of the crack tip and thermal stresses involved. A new stress distribution in the plastic zone ahead of the crack tip is proposed according to the fracture mechanics theory of second-order estimate of plastic zone size. The developed models with fewer fitting parameters are validated with the experimental results for $K_{IH}$ and $l_C$. The research results for radial cracking cases indicate that a better agreement for $K_{IH}$ can be achieved; the negative axial thermal stresses can lessen $K_{IH}$ and enlarge the critical hydride length, so its effect should be considered in the safety evaluation and constraint design for fuel rods; the critical hydride length $l_C$ changes slightly in a certain range of stress intensity factors, which interprets the phenomenon that the DHC velocity varies slowly in the steady crack growth stage. Besides, the sensitivity analysis of model parameters demonstrates that an increase in yield strength of zircaloy will result in a decrease in the critical hydride length $l_C$, and $K_{IH}$ will firstly decrease and then have a trend to increase with the yield strength of Zircaloy; higher fracture strength of hydrided zircaloy will lead to very high values of threshold stress intensity factor and critical hydride length at higher temperatures, which might be the main mechanism of crack arrest for some Zircaloy materials.

Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles

  • Soomro, Mukhtiar Ali;Mangi, Naeem;Memon, Aftab Hameed;Mangnejo, Dildar Ali
    • Geomechanics and Engineering
    • /
    • 제29권1호
    • /
    • pp.25-40
    • /
    • 2022
  • In this study, 3D coupled-consolidation numerical parametric study was conducted to predict the deformation mechanism of a 20 storey building sitting on (4×4) piled raft (with length of piles, Lp=30 m) to adjacent 6 m diameter (D) tunnelling in stiff clay. The influences of different tunnel locations relative to piles (i.e., zt/Lp) were investigated in this parametric study. In first case, the tunnel was excavated near the pile shafts with depth of tunnel axis (zt) of 9 m (i.e., zt/Lp). In second and third cases, tunnels were driven at zt of 30 m and 42 m (i.e., zt/Lp = 1.0 and 1.4), respectively. An advanced hypoplastic clay model (which is capable of taking small-strain stiffness in account) was adopted to capture soil behaviour. The computed results revealed that tunnelling activity adjacent to a building resting on piled raft caused significant settlement, differential settlement, lateral deflection, angular distortion in the building. In addition, substantial bending moment, shear forces and changes in axial load distribution along pile length were induced. The findings from the parametric study revealed that the building and pile responses significantly influenced by tunnel location relative to pile.

실내모형시험을 통한 사질토 지반에서 군말뚝과 터널의 수직 이격거리에 따른 하중분포 및 지반거동 분석 (Analysis of pile load distribution and ground behaviour depending on vertical offset between pile tip and tunnel crown in sand through laboratory model test)

  • 오동욱;이용주
    • 한국터널지하공간학회 논문집
    • /
    • 제19권3호
    • /
    • pp.355-373
    • /
    • 2017
  • 도심지에서의 터널굴착은 상부구조물과의 상호거동에 대한 이해가 필수적이다. 도심지에 사용중인 대부분의 구조물은 말뚝기초로 상부의 하중을 지지하고 있어, 터널 굴착 시 반드시 영향을 받는다. 따라서 본 연구에서는 실내모형시험을 통해 기존의 군말뚝 기초 하부 터널굴착에 따른 축력 분포와 지반의 거동을 분석하였다. 말뚝 기초는 2, 3 열 말뚝으로 가정되었으며, 말뚝 선단부와 터널 천단부의 이격거리는 터널직경에 대한 일반화를 위해 터널 직경(D) 대비 0.5D, 1.0D 그리고 1.5D로 고려되었다. 지반은 약 30%의 상대밀도(Dr)를 가지는 느슨한 사질토로 형성되었으며, 말뚝의 축력 분포를 측정하기 위해 말뚝에 변형률게이지(strain gauge)를 부착하였다. 또한, 이격거리에 따른 군말뚝의 침하와 인접지반의 침하를 변위센서(linear variable differential transformer; LVDT)와 다이얼게이지(dial gauge)를 통해 측정였으며, 터널굴착에 따른 지중의 변형을 근거리사진계측기법(close range photogrammetric technique)을 통해 측정하였다. 수치 해석을 통해 실내모형시험 및 근거리사진계측 결과와 비교 분석하였다. 본 연구에서는 체적손실율(volume loss; $V_L$) 개념을 이용하여 터널굴착을 모사하였으며, 1.5%로 적용되었다. 연구결과, 이격거리가 멀어질수록 말뚝의 축력감소는 작게 나타났으며, 침하량은 모두 유사한 경향을 나타내었다. 특히, 말뚝 선단부와 터널 천단부의 이격거리가 0.5D에서 1.0D로 증가할 때 축력과 침하량의 가장 큰 감소율이 가장 큰 것으로 나타났다.

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • 제7권5호
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.

공기기둥이 형성된 원통 용기의 내부유동 특성에 관한 수치해석 연구 (Numerical Study of the Characteristics of Internal Flow Including an Air Core in a Cylindrical Tank)

  • 박일석;손종현;손창현
    • 대한기계학회논문집B
    • /
    • 제36권3호
    • /
    • pp.269-276
    • /
    • 2012
  • 액체가 차있는 원통 용기를 회전 시킨 후 바닥 중앙에 위치한 원형 배수구로 액체를 배수시키면 공기 기둥이 형성된다. 공기기둥이 발생하면, 배수 유량이 감소하고 배수 시간도 지연된다. 본 연구에서는 공기기둥 형성과 배수과정 중의 용기내부의 유동특성을 수치해석 방법으로 관찰하였다. 다양한 격자계와 시간차분방법을 적용하였고 적합한 방식을 얻기 위해 실험결과와 비교하였다. 여러 위치에서의 축방향, 반경방향, 원주방향 속도 성분들의 분포를 시간대 별로 나타내었고, 속도 벡터와 유선 분포 도시를 통하여 내부 유동 구조를 분석하였다.

폴리에틸렌으로 피복된 전선화염의 전파에 교류전기장이 미치는 영향에 관한 실험적 연구 (Experimental Study on the Effects of AC Electric Fields on Flame Spreading over Polyethylene-insulated Electric-Wire)

  • 진영규;김민국;박정;정석호;김태형;박종호
    • 대한기계학회논문집B
    • /
    • 제34권11호
    • /
    • pp.1015-1025
    • /
    • 2010
  • 본 연구는 교류전기장이 인가된 전선에서의 화염전파특성에 전기장이 미치는 영향에 대한 실험적 연구이다. 폴리에틸렌으로 피복된 전선에서 인가된 교류전압과 주파수에 따라 화염전파율을 도출하였다. 그리고 화염전파는 선형적 화염 전파와 비선형적으로 가속된 화염 전파로 구분되어졌다. 이것은 전선에 인가된 교류전기장에 따라 형성된 전기장 세기의 축방향 분포가 원인이 된다. 그리고 기울어진 전선화염의 화염전파율이 상대적으로 높게 나타났다. 이러한 현상은 온도균형메커니즘으로 설명이 가능하다.

A comparative study between the new model and the current model for T-shaped combined footings

  • Garay-Gallegos, Jesus Rafael;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Aguilera-Mancilla, Gabriel;Garcia-Canales, Edith
    • Geomechanics and Engineering
    • /
    • 제30권6호
    • /
    • pp.525-538
    • /
    • 2022
  • This paper presents a more general model for T-shaped combined footings that support two columns aligned on a longitudinal axis and each column provides an axial load and two orthogonal moments. This model can be applied to the following conditions: (1) without restrictions on its sides, (2) a restricted side and (3) two opposite sides restricted. This model considers the linear soil pressure. The recently published works have been developed for a restricted side and for two opposite sides restricted by Luévanos-Rojas et al. (2018a, b). The current model considers the uniform pressure distribution because the position of the resultant force coincides with the center of gravity of the surface of the footing in contact with the soil in direction of the longitudinal axis where the columns are located. This paper shows three numerical examples. Example 1 is for a T-shaped combined footing with a limited side (one column is located on the property boundary). Example 2 is for a T-shaped combined footing with two limited opposite sides (the two columns are located on the property boundary). Example 3 is for a T-shaped combined footing with two limited opposite sides, one column is located in the center of the width of the upper flange (b1/2=L1), and other column is located at a distance half the width of the strip from the free end of the footing (b2/2=b-L1-L). The main advantage of this work over other works is that this model can be applied to T-shaped combined footings without restrictions on its sides, a restricted side and two opposite sides restricted. It also shows the deficiencies of the current model over the new model.

SUBOFF 모형 후방 난류항적 계측 및 실험식 유도 (Measurement of Turbulent Wake behind a SUBOFF Model and Derivation of Experimental Equations)

  • 신명수;문일성;나영인;박종천
    • 한국군사과학기술학회지
    • /
    • 제14권2호
    • /
    • pp.198-204
    • /
    • 2011
  • This paper presents the experimental result to investigate the characteristics of turbulent wake generated by submarine. A SUBOFF nude model which was assumed as an axial -symmetric body was used to create wake, and a thin strut was mounted on the top of the model. The experiments were conducted in a circulating water channel(CWC), and a hot-film was used to measure the turbulence in wake cross-section at the distance range of 0.0~2.0L from the model. The hot film anemometer measured turbulent velocity fluctuations, and the timeaveraged mean velocity and turbulent intensity are obtained from the acquired time-series data. Measured results show well the general characteristics of turbulent intensity, kinetic energy and mean velocity distribution. Also, experimental equations are derived. These experimental equations show well the general characteristics of the turbulent wake behind the submerged body with simple configuration.