• Title/Summary/Keyword: l/f Noise

Search Result 62, Processing Time 0.026 seconds

Performance Characteristics of MicroPET R4 Scanner for Small Animal Imaging (소동물 영상을 위한 MicroPET R4스캐너의 특성평가)

  • Lee, Byeong-Il;Lee, Jae-Sung;Kim, Jin-Su;Lee, Dong-Soo;Choi, Chang-Un;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.49-56
    • /
    • 2005
  • Purpose: Dedicated animal PET is useful equipment for the study of new PET tracer. recently, microPET R4 was installed in the Korea institute of radiology and medical science. In this study, we measured the characteristics of scanner. Materials and methods: Resolution was measured using a line source (F-18:65 ${\mu}Ci$, inner diameter: 0.5 mm). The line source was put in the axial direction and was moved from the center of field of view to outside with 1 mm interval. PET images were reconstructed using a filtered back-protection and ordered subset expectation maximization. line source (16.5 ${\mu}Ci$, 78 mm) was put on the tenter of axial direction to measure the sensitivity when the deadtime was under 1%. Images were acquired during 4 minutes respectively from center to 39 mm outward. Delayed count was subtracted from total count and then decay was corrected for the calculation of sensitivity. Noise equivalent count ratio and scatter fraction were calculated using cylindrical phantom. Results: Spatial resolution of reconstructed image using filtered back-projection was 1.86 mm(radial), 1.95 mm(tangential), 1.95 mm(axial) in the tenter of field of view, and 2.54 mm, 2.8 mm, 1.61 mm in 2 cm away from the center respectively. Sensitivity was 2.36% at the center of transaxial field of view. Scatter fraction was 20%. Maximal noise equivalent count ratio was 66.4 kcps at 242 kBq/mL. Small animal images were acquired for confirmation of performance. Conclusion: Performance characteristics of microPET R4 were similar with reported value. So this will be a useful tool for small animal imaging.

Statistical Analysis on Process Variables in Linear Roll-CMP (선형 Roll-CMP에서 공정변수에 관한 통계적 분석)

  • Wang, Han;Lee, Hyunseop;Jeong, Haedo
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.139-145
    • /
    • 2014
  • Nowadays, most micro-patterns are manufactured during flow line production. However, a conventional rotary chemical mechanical polishing (CMP) system has a limited throughput for the fabrication of large and flexible electronics. To overcome this problem, we propose a novel linear roll-CMP system for the planarization of large-area electronics. In this paper, we present a statistical analysis on the linear roll-CMP process of copper-clad laminate (CCL) to determine the impacts of process parameters on the material removal rate (MRR) and its non-uniformity (NU). In the linear roll-CMP process, process parameters such as the slurry flow rate, roll speed, table feed rate, and down force affect the MRR and NU. To determine the polishing characteristics of roll-CMP, we use Taguchi's orthogonal array L16 (44) for the experimental design and F-values obtained by the analysis of variance (ANOVA). We investigate the signal-to-noise (S/N) ratio to identify the prominent control parameters. The "higher is better" for the MRR and "lower is better" for the NU were selected for obtaining optimum CMP performance characteristics. The experimental and statistical results indicate that the down force and roll speed mainly affect the MRR and the down force and table feed rate determine the NU in the linear roll-CMP process. However, over 186.3 N of down force deteriorates the NU because of the bending of substrate. Roll speed has little relationship to the NU and the table feed rate does not impact on the MRR. This study provides information on the design parameter of roll-CMP machine and process optimization.

Optically Managing Thermal Energy in High-power Yb-doped Fiber Lasers and Amplifiers: A Brief Review

  • Yu, Nanjie;Ballato, John;Digonnet, Michel J.F.;Dragic, Peter D.
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.521-549
    • /
    • 2022
  • Fiber lasers have made remarkable progress over the past three decades, and they now serve far-reaching applications and have even become indispensable in many technology sectors. As there is an insatiable appetite for improved performance, whether relating to enhanced spatio-temporal stability, spectral and noise characteristics, or ever-higher power and brightness, thermal management in these systems becomes increasingly critical. Active convective cooling, such as through flowing water, while highly effective, has its own set of drawbacks and limitations. To overcome them, other synergistic approaches are being adopted that mitigate the sources of heating at their roots, including the quantum defect, concentration quenching, and impurity absorption. Here, these optical methods for thermal management are briefly reviewed and discussed. Their main philosophy is to carefully select both the lasing and pumping wavelengths to moderate, and sometimes reverse, the amount of heat that is generated inside the laser gain medium. First, the sources of heating in fiber lasers are discussed and placed in the context of modern fiber fabrication methods. Next, common methods to measure the temperature of active fibers during laser operation are outlined. Approaches to reduce the quantum defect, including tandem-pumped and short-wavelength lasers, are then reviewed. Finally, newer approaches that annihilate phonons and actually cool the fiber laser below ambient, including radiation-balanced and excitation-balanced fiber lasers, are examined. These solutions, and others yet undetermined, especially the latter, may prove to be a driving force behind a next generation of ultra-high-power and/or ultra-stable laser systems.

Performance Characteristics of 3D GSO PET/CT Scanner (Philips GEMINI PET/DT) (3차원 GSO PET/CT 스캐너(Philips GEMINI PET/CT의 특성 평가)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Byeong-Il;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.318-324
    • /
    • 2004
  • Purpose: Philips GEMINI is a newly introduced whole-body GSO PET/CT scanner. In this study, performance of the scanner including spatial resolution, sensitivity, scatter fraction, noise equivalent count ratio (NECR) was measured utilizing NEMA NU2-2001 standard protocol and compared with performance of LSO, BGO crystal scanner. Methods: GEMINI is composed of the Philips ALLEGRO PET and MX8000 D multi-slice CT scanners. The PET scanner has 28 detector segments which have an array of 29 by 22 GSO crystals ($4{\times}6{\times}20$ mm), covering axial FOV of 18 cm. PET data to measure spatial resolution, sensitivity, scatter fraction, and NECR were acquired in 3D mode according to the NEMA NU2 protocols (coincidence window: 8 ns, energy window: $409[\sim}664$ keV). For the measurement of spatial resolution, images were reconstructed with FBP using ramp filter and an iterative reconstruction algorithm, 3D RAMLA. Data for sensitivity measurement were acquired using NEMA sensitivity phantom filled with F-18 solution and surrounded by $1{\sim}5$ aluminum sleeves after we confirmed that dead time loss did not exceed 1%. To measure NECR and scatter fraction, 1110 MBq of F-18 solution was injected into a NEMA scatter phantom with a length of 70 cm and dynamic scan with 20-min frame duration was acquired for 7 half-lives. Oblique sinograms were collapsed into transaxial slices using single slice rebinning method, and true to background (scatter+random) ratio for each slice and frame was estimated. Scatter fraction was determined by averaging the true to background ratio of last 3 frames in which the dead time loss was below 1%. Results: Transverse and axial resolutions at 1cm radius were (1) 5.3 and 6.5 mm (FBP), (2) 5.1 and 5.9 mm (3D RAMLA). Transverse radial, transverse tangential, and axial resolution at 10 cm were (1) 5.7, 5.7, and 7.0 mm (FBP), (2) 5.4, 5.4, and 6.4 mm (3D RAMLA). Attenuation free values of sensitivity were 3,620 counts/sec/MBq at the center of transaxial FOV and 4,324 counts/sec/MBq at 10 cm offset from the center. Scatter fraction was 40.6%, and peak true count rate and NECR were 88.9 kcps @ 12.9 kBq/mL and 34.3 kcps @ 8.84 kBq/mL. These characteristics are better than that of ECAT EXACT PET scanner with BGO crystal. Conclusion: The results of this field test demonstrate high resolution, sensitivity and count rate performance of the 3D PET/CT scanner with GSO crystal. The data provided here will be useful for the comparative study with other 3D PET/CT scanners using BGO or LSO crystals.

The Evaluation of the Difference of the SUV Caused by DFOV Change in PET/CT (PET/CT 검사에서 확대된 표시시야가 표준섭취계수에 미치는 영향 평가)

  • Kwak, In-Suk;Lee, Hyuk;Choi, Sung-Wook;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.13-20
    • /
    • 2011
  • Purpose: The limited FOV(Field of View) of CT (Computed Tomography) can cause truncation artifact at external DFOV (Display Field of View) in PET/CT image. In our study, we measured the difference of SUV and compared the influence affecting to the image reconstructed with the extended DFOV. Materials and Methods: NEMA 1994 PET Phantom was filled with $^{18}F$(FDG) of 5.3 kBq/mL and placed at the center of FOV. Phantom images were acquired through emission scan. Shift the phantom's location to the external edge of DFOV and images were acquired with same method. All of acquired data through each experiment were reconstructed with same method, DFOV was applied 50 cm and 70 cm respectively. Then ROI was set up on the emission image, performed the comparative analysis SUV. In the clinical test, patient group shown truncation artifact was selected. ROI was set up at the liver of patient's image and performed the comparative analysis SUV according to the change of DFOV. Results: The pixel size was increase from 3.91 mm to 5.47 mm according to the DFOV increment in the centered location phantom study. When extended DFOV was applied, $_{max}SUV$ of ROI was decreased from 1.49 to 1.35. In case of shifted the center of phantom location study, $_{max}SUV$ was decreased from 1.30 to 1.20. The $_{max}SUV$ was 1.51 at the truncated region in the extended DFOV. The difference of the $_{max}SUV$ was 25.9% higher at the outside of the truncated region than inside. When the extended DFOV was applied, $_{max}SUV$ was decreased from 3.38 to 3.13. Conclusion: When the extended DFOV was applied, $_{max}SUV$ decreasing phenomenon can cause pixel to pixel noise by increasing of pixel size. In this reason, $_{max}SUV$ was underestimated. Therefore, We should consider the underestimation of quantitative result in the whole image plane in case of patient study applied extended DFOV protocol. Consequently, the result of the quantitative analysis may show more higher than inside at the truncated region.

  • PDF

Noise Subtraction in a Fiber-Optic Gyroscope with Fiber Amplifier/Source Configuration (잡음축소된 광섬유 증폭기형 광원 방식의 자이로스코프)

  • 진영준;박태용;박희갑
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.242-243
    • /
    • 2000
  • Erbium 첨가 광섬유(EDF) 광원은 출력 특성과 온도에 대한 파장 특성이 우수하여 Sagnac 간섭계의 원리를 이용한 광섬유 자이로스코프(이하 줄여 자이로라 함)에 많이 사용되고 있다. 이득매질인 EDF를 광원 겸 광증폭기로 사용하는 광섬유 증폭기형 광원 (Fiber Amplifier/source : FAS) 방식$^{[l-2]}$ 은 기존의 single-pass 방식$^{[3]}$ 에 비해서 구조가 단순하고 검출광 power가 크다는 장점이 있다. 그런데, 검출광 power가 큰 경우에 자이로의 SNR이 광원의 과잉잡음(excess noise)에 의해서 제한되므로 실제로 자이로의 측정감도는 개선되지 않는 문제점이 있다.$^{[4]}$ Single-pass 방식의 광원을 사용하는 경우, 적절한 신호처리를 통해 자이로 출력신호에 포함된 광원의 과잉잡음의 적정주파수 성분을 소거함으로써 자이로 신호의 SNR을 개선시킨 바 있었다.$^{[5]}$ 그러나, 일반적으로 single-pass 방식의 경우에는 검출광 power가 작아서 자이로의 SNR이 광원의 과잉잡음에 의해서 제한되는 경우는 드물다. 반면에 증폭기형 광원 방식은 자이로로부터 되돌아오는 신호광이 다시 광원으로 입사되어 EDF를 반대 방향으로 진행하는 동안 증폭되기 때문에 충분히 큰 검출광 power를 얻을 수 있다. 따라서, 자이로 신호에 포함된 광원의 과잉잡음이 소거된다면 자이로 신호의 SNR은 크게 개선될 것으로 여겨진다. 이 논문에서는 광섬유 증폭기형 광원 방식(FAS)의 자이로에 대해 위와 같은 신호처리를 이용하여 광인의 과잉잡음의 적정주파수 성분을 소거하는 실험을 하였다. (중략)한 흡수를 확인하고, $^4$T$_2$$\longrightarrow$$^4$A$_2$(650-800 nm), $^2$E$\longrightarrow$$^4$A$_2$에 의한 nophonon line R$_1$, R$_2$(680.4, 678.5 nm) 및 $^2$T$_1$$\longrightarrow$$^4$A$_2$(655.7, 649.3, 645.2 nm)의 형광방출 스펙트럼을 얻었으며, 형광수명은 0.264 ms로 조사되었다. 제조된 레이저 발진봉은 직경 6.3 m, 길이 45 nm이었다.\pm$0.06kHz Ge $F_4$; -1.84$\pm$0.04kHz$0.04kHz/TEX>0.04kHz 모국어 및 관련 외국어의 음운규칙만 알면 어느 학습대상 외국어에라도 적용할 수 있는 보편성을 지니는 것으로 사료된다.없다. 그렇다면 겹의문사를 [-wh]의리를 지 닌 의문사의 병렬로 분석할 수 없다. 예를 들어 누구누구를 [주구-이-ν가] [누구누구-이- ν가]로부터 생성되었다고 볼 수 없다. 그러므로 [-wh] 겹의문사는 복수 의미를 지닐 수 없 다. 그러면 단수 의미는 어떻게 생성되는가\ulcorner 본 논문에서는 표면적 형태에도 불구하고 [-wh]의미의 겹의문사는 병렬적 관계의 합성어가 아니라 내부구조를 지니지 않은 단순한 단어(minimal $X

  • PDF

Electrical Properties of BaTiO3-based 0603/0.1µF/0.3mm Ceramics Decoupling Capacitor for Embedding in the PCB of 10G RF Transceiver Module

  • Park, Hwa-sun;Na, Youngil;Choi, Ho Joon;Suh, Su-jeong;Baek, Dong-Hyun;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1638-1643
    • /
    • 2018
  • Multi-layer ceramic capacitors as decoupling capacitor were fabricated by dielectric composition with a high dielectric constant. The fabricated decoupling capacitors were embedded in the PCB of the 10G RF transceiver module and evaluated for the characteristics of electrical noise by the level of AC input voltage. In order to further improve the electrical properties of the $BaTiO_3$ based composite, glass frit, MgO, $Y_2O_3$, $Mn_3O$, $V_2O_5$, $BaCO_3$, $SiO_2$, and $Al_2O_3$ were used as additives. The electrical properties of the composites were determined by various amounts of additives and optimum sintering temperature. As a result of the optimized composite, it was possible to obtain a density of $5.77g/cm^3$, a dielectric constant of 1994, and an insulation resistance of $2.91{\times}10^{12}{\Omega}$ at an additive content of 5wt% and a sintering temperature of $1250^{\circ}C$. After forming a $2.5{\mu}m$ green sheet using the doctor blade method, a total of 77 layers were laminated and sintered at $1180^{\circ}C$. A decoupling capacitor with a size of $0.6mm(W){\times}0.3mm(L){\times}0.3mm(T)$ (width, length and thickness, respectively) and a capacitance of 100 nF was embedded using a PCB process for the 10G RF Transceiver modules. In the range of AC input voltage 400mmV @ 500kHz to 2200mV @ 900kHz, the embedded 10G RF Transceiver modules evaluated that it has better electrical performance than the non-embedded modules.

An Assessment of Post-Injection Transmission Measurement for Attenuation Correction With Rotating Pin Sources in Positron Emission Tomography (양전자방출단층촬영(PET)에서 회전 핀선원과 투과 및 방출 동시 영상 방법을 이용한 감쇠보정 방법 특성에 관한 고찰)

  • Lee, J.R.;Choi, Y.;Lee, K.H.;Kim, S.E.;Chi, D.Y.;Shin, S.A.;Kim, B.T.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.4
    • /
    • pp.533-540
    • /
    • 1995
  • Attenuation correction is important in producing quantitative positron emission tomography (PET) images. Conventionally, photon attenuation effects are corrected using transmission measurements performed before tracer administration. The pre-injection transmission measurement approach may require a time delay between transmission and emission scans for the tracer studies requiring a long uptake period, about 45 minutes for F-18 deoxyglucose study. The time delay will limit patient throughput and increase the likelihood of patient motion. A technique lot performing simultaneous transmission and emission scans (T+E method) after the tracer injection has been validated. The T+E method substracts the emission counts contaminating the transmission measurements to produce accurate attenuation correction coefficients. This method has been evaluated in experiments using a cylindrical phantom filled with background water (5750 cc) containing $0.4{\mu}Ci/cc$ of F-18 fluoride ion and one insert cylinder (276 cc) containing $4.3{\mu}Ci/cc$. GE $Advance^{TM}$ PET scanner and Ge-68 rotating pin sources for transmission scanning were used for this investigation. Post-injection transmission scan and emission scan were peformed alternatively over time. The error in emission images corrected using post-infection transmission scan to emission images corrected transmission scan was 2.6% at the concentration of $1.0{\mu}Ci/cc$. No obvious differences in image quality and noise were apparent between the two images. The attenuation correction can be accomplished with post-injection transmission measurement using rotating pin sources and this method can significantly shorten the time between transmission and omission scans and thereby reduce the likelihood of patient motion and increase scanning throughput in PET.

  • PDF

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.

Frequency stabilization of 1.5μm laser diode by using double resonance optical pumping (이중공명 광펌핑을 이용한 1.5μm 반도체 레이저 주파수 안정화)

  • Moon, Han-Sub;Lee, Won-Kyu;Lee, Rim;Kim, Joong-Bok
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.3
    • /
    • pp.193-199
    • /
    • 2004
  • We present the double resonance optical pumping(DROP) spectra in the transition 5P$_{3}$2/-4D$_{3}$2/ and 5P$_{3}$2/-4D$_{5}$ 2/ of ($^{87}$ Rb) and the frequency stabilization in the $1.5mutextrm{m}$ region using those spectra. Those spectra have high signal-to-noise ratio and narrow spectral linewidth, which is about 10 MHz. We could account fur the relative intensities of the hyperfine states of those spectra by the spontaneous emission into the other state. When the frequency of the $1.5mutextrm{m}$ laser diode was stabilized to the DROP spectrum, the frequency fluctuation was about 0.2 MHz fDr sampling time of 0.1 s and the Allan deviation(or the square root of the Allan variance) was about 1${\times}$10$^{-11}$ for averaging time of l00s.