• Title/Summary/Keyword: korea standard leaching test

Search Result 35, Processing Time 0.019 seconds

Evaluation of Rheological Properties and Acceptance Criteria of Solidifying Agents for Radioactive Waste Disposal Using Waste Concrete Powder (폐콘크리트를 재활용한 방사성 폐기물용 고화제의 레올로지 특성 및 인수기준 특성평가)

  • Seo, Eun-A;Kim, Do-Gyeum;Lee, Ho-Jea
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.276-284
    • /
    • 2022
  • In this study, performance evaluation and rheological characteristics were analyzed for recycling the fine powder of nuclear power plant dismantled waste concrete as a solidifying agent for radioactive waste disposal. The radioactive concrete fine powder was used to prepare a simulated sample, and the test specimen was prepared using Di-water, CoCl2, and 1 mol CsCl aqueous solution as mixing water. Regardless of the aggregate mixing ratio and the type of mixing water, it satisfies the performance standard of 3.45 MPa for compressive strength at 28 days of age. All specimens satisfied the criteria for submersion strength, and the thermal cycle compressive strength satisfies the criteria for all specimens except Plain-50. As a result of evaluating the rheological properties of the solidifying agent, it was found that the increase in the aggregate mixing rate decreased the yield stress and plastic viscosity. The leaching index for cobalt and cesium of all specimens was 6 or higher, which satisfies the standard. In order to secure the stable performance of the solidifying agent, it is considered effective to use 40 % or less of the aggregate component in the solidifying agent.

Synthesis of Zeolite P1 and Analcime from Sewage Sludge Incinerator Fly Ash (하수슬러지 소각 비산재를 이용한 제올라이트 P1 및 Analcime의 합성)

  • Lee, Je-Seung;Chung, Sook-Nye;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.659-665
    • /
    • 2008
  • This study is about zeolite synthesis from the sewage sludge incinerator fly ash of "S" sewage treatment center located in Seoul. For this purpose, the properties of raw fly ash as starting material, the hydrothermal conditions for zeolite synthesis and the environmental applicabilities of synthesized zeolites were examined. Fly ash from sewage sludge incinerator has large quantities of SiO$_2$ and Al$_2$O$_3$ and their contents are 42.8 wt.% and 21.2 wt.% respectively. So fly ash is considered to be possible starting material for zeolite synthesis. The results from leaching test of fly ash showed that the concentration of hazardous metals were very low as compared with the Korea leaching standard of the Waste Management Law. But the concentration from total recoverable test of fly ash were higher than the fertilizer standard of Fertilizer Management Law. Major zeolite products synthesized by hydrothermal reaction are analcime in teflon vessel and zeolite P1 in borosilicate flask. Optimum conditions for the synthesis of analcime were 1 N of NaOH concentration, 16 hour of reaction time and 135$^{\circ}C$ of reaction temperature. For the zeolite P1 formation, the proper conditions were demonstrated to be 5 N of NaOH concentration, 16 hour reaction time and 130$^{\circ}C$ of reaction temperature in this study. Hazardous metal contents in the analcime product are similar with those in raw fly ash. In case of the zeolite P1, the contents are reduced to nearly a half. Raw fly ash and the analcime product showed NH$_4{^+}$ ion exchange capacity of 0$\sim$1.0 mg of NH$_4{^+}$g$^{-1}$ and 3.0$\sim$7.4 mg of NH$_4{^+}$g$^{-1}$, respectively. However, the zeolite P1 product reached exchange capacity to 14.6$\sim$17.8 mg of NH$_4{^+}$g$^{-1}$. This values are in the range of those of natural clinoptilolite and phillipsite. From this point of view, zeolite synthesis from sewage treatment sludge incinerator fly ash is a good alternative for solid waste recycling.

Fundamental Study on Recycling as Construction Material of Dredged Harbor Soil Mixed with Clay and Glass Frit (점토와 유리프리트를 혼합한 항만준설토의 건축자재 재활용에 관한 기초연구)

  • Im, Dong-Su;Kim, Kyung-Nam;Cho, Yeon-Bae;Park, Joon-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.575-585
    • /
    • 2013
  • This research was performed to evaluate the recycling feasibility as a construction material of dredged harbor soil mixed with clay and glass frit. Concentration of heavy metals of the dredged soil from D harbor was severly high, showing Zn of 526.0~13,150.1 mg/kg. The dredged soil was maily composed of 48.30 wt% $SiO_2$, 16.60 wt% $Al_2O_3$, 10.10 wt% CaO, 7.75 wt% $Fe_2O_3$. The clay and the glass frit contained 70.82 wt% $SiO_2$ and $Al_2O_3$ 18.78 wt%, and 71.75 wt% $SiO_2$, 13.99 wt% CaO, 8.51 wt% $Na_2O$, respectively. After adding 10~40 wt% to the clay and sintering them at $1,000^{\circ}C$ or $1,100^{\circ}C$, the compressive strength of the sintered specimens showed $132.6{\sim}178.5kgf/cm^2$ or $581.2{\sim}793.7kgf/cm^2$, respectively. In case of SC46 with the addition 40 wt% of the dredged soil to the clay, the compressive strength ($793.7kgf/cm^2$) of specimen sintered at $1,100^{\circ}C$ was over 5 times higher than that at $1,000^{\circ}C$. The specimen mixed with 40 wt% of dredged soil, 60 wt% of clay and 1 wt% of glass frit satisfied the 1st grade standard for clay brick by KS L 4201. The results of all specimens by Korean Standard Leaching Test also satisfied the standard criteria.

An Investigation of Treatment Effects of Limestone and Steel Refining Slag for Stabilization of Arsenic and Heavy Metal in the Farmland Soils nearby Abandoned Metal Mine (폐금속 광산 주변 비소 및 중금속 오염농경지의 안정화 처리를 위한 석회석과 제강슬래그의 처리효과 검토)

  • Yun, Sung-Wook;Kang, Sin-Il;Jin, Hae-Geun;Kim, Ha-Jin;Lim, Young-Cheol;Yi, Ji-Min;Yu, Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.734-744
    • /
    • 2011
  • A soil stabilization method is an effective and practical remediation alternative for arsenic (As) and heavy metal contaminated farmland soils nearby abandoned metal mine in Korea. This method is a technique whereby amendments are incorporated and mixed with a contaminated soil. Toxic metal bind to the amendments, which reduce their mobility in soil, so the successful stabilization of multi-element contaminated soil depends on the combination of critical elements in the soil and the type of amendments. The objective of this study is to investigate the treatment effects and applicability of limestone (LS) and steel refining slag (SRS) as the amendment for farmland soil contaminated with As and heavy metals, and a lab-column test was conducted for achieving this purpose. The result showed that soil treated with LS and SRS maintained pH buffer capacity and, as a result, the heavy metal leaching concentration was quite low below the water quality standard compared to untreated soil which leachate exceeding the water quality standard was observed, however, the arsenic concentration rather increased with increasing mixture ratio of SRS. This was believed to be related to phosphorus (P) contained in SRS, and dominancy in the competitive adsorption relation between As and P binding strongly to iron might be different according to soil characteristic. We suggested that LS is a effective amendment for reducing heavy metals in soil, and SRS should be used after investigating its applicability based on the adsorption selectivity of arsenic and phosphorus in selected soil.

Application of Nano Fe°-impregnated Biochar for the Stabilization of As-contaminated Soil (비소 오염토양의 안정화를 위한 나노 Fe° 담지 바이오차 적용 연구)

  • Choi, Yu-Lim;Angaru, Ganesh Kumar Reddy;Ahn, Hye-Young;Park, Kwang-Jin;Joo, Wan-Ho;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.5
    • /
    • pp.350-362
    • /
    • 2020
  • In this study, nano Fe°-impregnated biochar (INPBC) was prepared using pruning residues and one-pot synthetic method and evaluated its performance as an amendment agent for the stabilization of arsenic-contaminated soil. For the preparation of INPBC, the mixture of pruning residue and Fe (III) solution was heated to 220℃ for 3hr in a teflon-sealed autoclave followed by calcination at 600℃ under N2 atmosphere for 1hr. As-prepared INPBC was characterized using FT-IR, XRD, BET, SEM. For the stabilization test of as-prepared INPBC, As-contaminated soils (Soil-E and Soil-S) sampled from agricultural sites located respectively near E-abandoned mine and S-abandoned mine in South Korea were mixed with different of dosage of INPBC and cultivated for 4 weeks. After treatment, TCLP and SPLP tests were conducted to determine the stabilization efficiency of As in soil and showed that the stabilization efficiency was increased with increasing the INPBC dosage and the concentration of As in SPLP extractant of Soil-E was lower than the drinking water standard level of Ministry of Environment of South Korea. The sequential fractionation of As in the stabilized soils indicated that the fractions of As in the 1st and 2nd stages that correspond liable and known as bioavailable fraction were decreased and the fractions of As in 3rd and 4th stages that correspond relatively non-liable fraction were increased. Such a stabilization of As shows that the abundant nano Fe° on the surface of INPBC mixed with As-contaminated soils played the co-precipitation of As leaching from soil by surface complexation with iron. The results of this study may imply that INPBC as a promising amendments for the stabilization of As-contaminated soil play an important role.