• Title/Summary/Keyword: korea concrete institute

Search Result 13,532, Processing Time 0.032 seconds

Effect of silica fume content in concrete blocks on laser-induced explosive spalling behavior

  • Seong Y. Oh;Gwon Lim;Sungmo Nam;Byung-Seon Choi;Taek Soo Kim;Hyunmin Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1988-1993
    • /
    • 2023
  • This experimental study investigated the effect of silica fume mixed in concrete blocks on laser-induced explosion behavior. We used a 5.3 kW fiber laser as a thermal source to induce explosive spalling on a concrete surface blended with and without silica fume. An analytical approach based on the difference in the removal rate and thermal behavior was used to determine the effect of silica fume on laser-induced explosive spalling. A scanner was employed to calculate the laser-scabbled volume of the concrete surface to derive the removal rate. The removal rate of the concrete mixed with silica fume was higher than that of without silica fume. Thermal images acquired during scabbling were used to qualitatively analyze the thermal response of laser-induced explosive spalling on the concrete surface. At the early stage of laser heating, an uneven spatial distribution of surface temperature appeared on the concrete blended with silica fume because of frequent explosive spalling within a small area. By contrast, the spalling frequency was relatively lower in laser-heated concrete without silica fume. Furthermore, we observed that a larger area was removed via a single explosive spalling event owing to its high porosity.

Prediction of Shear Behavior of Reinforced Concrete Panels Subjected to Reversed Cyclic Loading (반복하중을 받는 철근 콘크리트 막요소의 전단거동 예측)

  • 이정윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.105-110
    • /
    • 2002
  • This paper proposes an analytical method to predict the behavior of reinforced concrete beams subjected to reversed cyclic loading. The proposed method is based on the compatibility aided truss model and adopts the stress vs. strain curve of concrete which considers the softening effects. This model Is verified by comparing to the six reinforced concrete panel tests.

  • PDF

A Study on Stable-Unstable Behavior in Concrete (콘크리트의 안정-불안정 거동에 관한 연구)

  • 송하원;전재홍;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.459-465
    • /
    • 1996
  • This paper is about unstable behavior in concrete during the localized deformation and the crack growths in concrete. By modeling the strain localization phenomenon of concrete, the stability condition of the localization is obtained and analyzed. And the stability and bifurcation condition of crack growths in two parallel cracks under different loading conditions are derived and discussed.

  • PDF

IMPACT ANALYSES AND TESTS OF CONCRETE OVERPACKS OF SPENT NUCLEAR FUEL STORAGE CASKS

  • Lee, Sanghoon;Cho, Sang-Soon;Jeon, Je-Eon;Kim, Ki-Young;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.73-80
    • /
    • 2014
  • A concrete cask is an option for spent nuclear fuel interim storage. A concrete cask usually consists of a metallic canister which confines the spent nuclear fuel assemblies and a concrete overpack. When the overpack undergoes a missile impact, which might be caused by a tornado or an aircraft crash, it should sustain an acceptable level of structural integrity so that its radiation shielding capability and the retrievability of the canister are maintained. A missile impact against a concrete overpack produces two damage modes, local damage and global damage. In conventional approaches [1], those two damage modes are decoupled and evaluated separately. The local damage of concrete is usually evaluated by empirical formulas, while the global damage is evaluated by finite element analysis. However, this decoupled approach may lead to a very conservative estimation of both damages. In this research, finite element analysis with material failure models and element erosion is applied to the evaluation of local and global damage of concrete overpacks under high speed missile impacts. Two types of concrete overpacks with different configurations are considered. The numerical simulation results are compared with test results, and it is shown that the finite element analysis predicts both local and global damage qualitatively well, but the quantitative accuracy of the results are highly dependent on the fine-tuning of material and failure parameters.

A Study on Basic Properties of Natural Minerals with Silica-Component as Admixture for Concrete (천연 실리카질 혼화재를 사용한 콘크리트의 기초적 특성 연구)

  • 최광일;김진춘;강민호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.52-56
    • /
    • 1996
  • In this study, when natural mineral with Silica components(Zeolite & Mudstone) abundant in Korea used as an admixture for concrete, it is investigated that the properties of strength increase and economic effect compared with Silica Fume, the general admixture of high strength concrete.

  • PDF

Governing Design Factors of GFRP-Reinforced Concrete Bridge Deck (GFRP 근 보강 콘크리트 교량 바닥판의 설계지배인자)

  • Cho, Jeong-Rae;Park, Young Hwan;Park, Sung Yong;Cho, Kunhee;Kim, Sung Tae
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.70-77
    • /
    • 2015
  • In this study, the governing design factors of GFRP-reinforced concrete bridge deck are analyzed for typical bridges in Korea. The adopted bridge deck is a cast-in-situ concrete bridge deck for the prestressed concrete girder bridge with dimensions of 240 mm thickness and 2.75 m span length from center-to-center of supporting girders. The selected design variables are the diameters of GFRP rebar, spacings of GFRP rebars and concrete cover thicknesses, Considering the absence of the specification relating GFRP rebar in Korea, AASHTO specification is used to design the GFRP-reinforced concrete bridge deck. The GFRP-reinforced concrete bridge deck is proved to be governed by the criteria about serviceability, especially maximum crack width, while steel reinforced concrete bridge deck is governed by the criteria on ultimate limit state. In addition, GFRP rebars with diameter of 16 mm ~ 19 mm should be used for the main transverse direction of decks to assure appropriate rebar spacings.