최근 글로벌 OTT 서비스에서 한국드라마가 세계적 인기를 얻음에 따라 드라마 콘텐츠의 가치가 높아지고 있다. 드라마 대본은 드라마 제작에 있어서 핵심이 되는 데이터로, 특히 대사에는 인물의 특성이 잘 나타나 있다. 본 논문에서는 KoBERT 모델을 활용해 드라마 대사에서 인물의 특성 중 하나인 성별을 구분하고 실험 결과를 제시한다. KoBERT 모델로 대사의 성별을 분류한 뒤, 콘텐츠 분석과 인공지능 창작 측면에서의 활용 가능성에 대해 논의한다.
통신 기술의 발전으로 일반인들도 다양한 자료들을 인터넷에서 손쉽게 찾아볼 수 있는 시대가 도래하였다. 개인이 접근할 수 있는 정보량이 기하급수적으로 많아 짐에 따라, 이를 효율적으로 요약, 정리하여 보여주는 서비스들의 필요성이 높아지기 시작했다. 본 논문에서는, 자연어 처리 모델인 BART를 40GB 이상의 한국어 텍스트로 미리 학습된 한국어 언어 모델 KoBART를 사용한 한국어 논문 요약 모델을 제안하고, KoBART와 KoBERT 모델의 한국어 논문 요약 성능을 비교한다.
본 논문에서는 UD Korean Kaist v2.3 코퍼스를 이용하여 범용 품사 태깅, 표제어추출 그리고 의존 구문분석을 동시에 예측할 수 있는 보편적 다중 작업 모델을 제안하였다. 제안 모델은 사전학습 언어모델인 다국어 BERT (Multilingual BERT)와 한국어 BERT (KR-BERT와 KoBERT)을 대상으로 추가학습 (fine-tuning)을 수행하여 BERT 모델의 자가-집중 (self-attention) 기법과 그래프 기반 Biaffine attention 기법을 적용하여 제안 모델의 성능을 비교 분석하였다.
최근 많은 연구들이 BERT를 활용하여, 주어진 문맥에서 언어학/문법적으로 적절하지 않은 단어를 인지하고 찾아내는 성과를 보고하였다. 하지만 일반적으로 딥러닝 관점에서 NLL기법(Negative log-likelihood)은 주어진 문맥에서 언어 변칙에 대한 정확한 성격을 규명하기에는 어려움이 있다고 지적되고 있다. 이러한 한계를 해결하기 위하여, Li et al.(2021)은 트랜스포머 언어모델의 은닉층별 밀도 추정(density estimation)을 통한 가우시안 확률 분포를 활용하는 가우시안 혼합 모델(Gaussian Mixture Model)을 적용하였다. 그들은 트랜스포머 언어모델이 언어 변칙 예문들의 종류에 따라 상이한 메커니즘을 사용하여 처리한다는 점을 보고하였다. 이 선행 연구를 받아들여 본 연구에서는 한국어 기반 언어모델인 KoBERT나 KR-BERT도 과연 한국어의 상이한 유형의 언어 변칙 예문들을 다른 방식으로 처리할 수 있는지를 규명하고자 한다. 이를 위해, 본 연구에서는 한국어 형태통사적 그리고 의미적 변칙 예문들을 구성하였고, 이 예문들을 바탕으로 한국어 기반 모델들의 성능을 놀라움-갭(surprisal gap) 점수를 계산하여 평가하였다. 본 논문에서는 한국어 기반 모델들도 의미적 변칙 예문을 처리할 때보다 형태통사적 변칙 예문을 처리할 때 상대적으로 보다 더 높은 놀라움-갭 점수를 보여주고 있음을 발견하였다. 즉, 상이한 종류의 언어 변칙 예문들을 처리하기 위하여 다른 메커니즘을 활용하고 있음을 보였다.
최근 챗봇 시스템은 급격한 발전과 함께 사용자와 자연스러운 대화를 할 수 있는 인공지능 기술의 필요성이 대두되고 있다. 기존의 챗봇 시스템은 대화 상황을 충분히 이해하지 못하거나, 학습된 데이터를 벗어나는 문장에 대한 일관성 있는 응답을 제공하지 못하는 한계가 있다. 본 논문에서는 GPT-3와 KoBERT를 활용하여 사용자의 감정 상태를 파악하고 해당 감정을 고려한 일관성 있는 대화를 제공하는 감정 분석 기반 챗봇 시스템을 제안한다. 이를 바탕으로 긍정적인 대화를 이어 나가는데 초점을 두어 자연스러운 대화가 가능할 것으로 기대된다.
최근 딥러닝 기술이 빠르게 발전함에 따라 국가 R&D 분야의 방대한 텍스트 문서를 다양한 관점에서 분석하기 위한 수요가 급증하고 있다. 특히 대용량의 말뭉치에 대해 사전학습을 수행한 BERT(Bidirectional Encoder Representations from Transformers) 언어모델의 활용에 대한 관심이 높아지고 있다. 하지만 국가 R&D와 같이 고도로 전문화된 분야에서 높은 빈도로 사용되는 전문어는 기본 BERT에서 충분히 학습이 이루어지지 않은 경우가 많으며, 이는 BERT를 통한 전문 분야 문서 이해의 한계로 지적되고 있다. 따라서 본 연구에서는 최근 활발하게 연구되고 있는 추가 사전학습을 활용하여, 기본 BERT에 국가 R&D 분야 지식을 전이한 R&D KoBERT 언어모델을 구축하는 방안을 제시한다. 또한 제안 모델의 성능 평가를 위해 보건의료, 정보통신 분야의 과제 약 116,000건을 대상으로 분류 분석을 수행한 결과, 제안 모델이 순수한 KoBERT 모델에 비해 정확도 측면에서 더 높은 성능을 나타내는 것을 확인하였다.
최근 작성한 일기를 SNS에 올려 평범한 사람들이 음악, 음식, 사건 등 소소한 일상을 남기고 우울증 투병기를 공유하여 힘을 얻기도 하는 등 누가 시키지 않아도 일기를 작성하고 간직하는 사람들이 증가하고 있다. 이러한 변화로 일기는 하루의 일상을 기록하는 목적을 넘어 어떤 감정을 느꼈는지 알아차리고 자아를 성찰 및 탐구하는 단계로 발전하고 있다. 그러나 스스로 일기의 키워드를 분석하고 감정이 어떠한지 정확하게 아는 것은 어렵다. 이에 따라 본 논문에서는 제시한 문제를 해결하기 위한 방법으로 KoBERT와 KoNLPy를 활용한 키워드 및 감정분석 일기 서비스를 제안하였다. 본 연구의 키워드 및 감정분석 일기 서비스는 사용자가 무의식적으로 표현하는 텍스트 기반의 일기에서 자주 반복되는 키워드와 감정을 제공하여 자신의 감정상태를 쉽게 인지하고 되돌아볼 수 있도록 제작하였다.
자연어 처리 분야에서 반어 및 비꼼 탐지의 중요성이 커지고 있음에도 불구하고, 한국어에 관한 연구는 다른 언어들에 비해 상대적으로 많이 부족한 편이다. 본 연구는 한국어 텍스트에서의 반어 탐지를 위해 다양한 모델을 실험하는 것을 목적으로 한다. 본 연구는 BERT기반 모델인 KoBERT와 ChatGPT를 사용하여 반어 탐지 실험을 수행하였다. KoBERT의 경우, 감성 데이터를 추가 학습하는 두 가지 방법(전이 학습, 멀티태스크 학습)을 적용하였다. 또한 ChatGPT의 경우, Few-Shot Learning기법을 적용하여 프롬프트에 입력되는 예시 문장의 개수를 증가시켜 실험하였다. 실험을 수행한 결과, 감성 데이터를 추가학습한 전이 학습 모델과 멀티태스크 학습 모델이 감성 데이터를 추가 학습하지 않은 기본 모델보다 우수한 성능을 보였다. 한편, ChatGPT는 KoBERT에 비해 현저히 낮은 성능을 나타내었으며, 입력 예시 문장의 개수를 증가시켜도 뚜렷한 성능 향상이 이루어지지 않았다. 종합적으로, 본 연구는 KoBERT를 기반으로 한 모델이 ChatGPT보다 반어 탐지에 더 적합하다는 결론을 도출했으며, 감성 데이터의 추가학습이 반어 탐지 성능 향상에 기여할 수 있는 가능성을 제시하였다.
우리는 유학생이 작성한 한국어 쓰기 답안지의 점수 구간을 예측하는 문제에서 세 개의 딥러닝 기반 한국어 언어모델의 예측 성능을 조사한다. 이를 위해 총 304편의 답안지로 구성된 실험 데이터 세트를 구축하였는데, 답안지의 주제는 직업 선택의 기준('직업'), 행복한 삶의 조건('행복'), 돈과 행복('경제'), 성공의 정의('성공')로 다양하다. 이들 답안지는 네 개의 점수 구간으로 구분되어 평어 레이블(A, B, C, D)이 매겨졌고, 총 11건의 점수 구간 예측 실험이 시행되었다. 구체적으로는 5개의 '직업' 답안지 점수 구간(평어) 예측 실험, 5개의 '행복' 답안지 점수 구간 예측 실험, 1개의 혼합 답안지 점수 구간 예측 실험이 시행되었다. 이들 실험에서 세 개의 딥러닝 기반 한국어 언어모델(KoBERT, KcBERT, KR-BERT)이 다양한 훈련 데이터로 미세조정되었다. 또 두 개의 전통적인 확률적 기계학습 분류기(나이브 베이즈와 로지스틱 회귀)도 그 성능이 분석되었다. 실험 결과 딥러닝 기반 한국어 언어모델이 전통적인 기계학습 분류기보다 우수한 성능을 보였으며, 특히 KR-BERT는 전반적인 평균 예측 정확도가 55.83%로 가장 우수한 성능을 보였다. 그 다음은 KcBERT(55.77%)였고 KoBERT(54.91%)가 뒤를 이었다. 나이브 베이즈와 로지스틱 회귀 분류기의 성능은 각각 52.52%와 50.28%였다. 학습된 분류기 모두 훈련 데이터의 부족과 데이터 분포의 불균형 때문에 예측 성능이 별로 높지 않았고, 분류기의 어휘가 글쓰기 답안지의 오류를 제대로 포착하지 못하는 한계가 있었다. 이 두 가지 한계를 극복하면 분류기의 성능이 향상될 것으로 보인다.
많은 장애아 부모들은 양육에 대한 스트레스, 미래에 대한 걱정으로 심리적으로 상당한 중압감을 느낀다. 이에 비해 매년 증가하는 장애인 수에 비해 장애아 부모 및 가족의 심리적·정신적 문제를 해결하기 위한 프로그램이 부족하다.[1] 이를 해결하고자 본 논문에서는 감정분석 소통 플랫폼을 제안한다. 제안하는 플랫폼은 KoBERT 모델을 fine-tunning 하여 사용자의 일기 속 감정을 분석하여 장애아를 둔 부모 및 가족 간의 소통을 돕는다. 성능평가는 제안하는 플랫폼의 주요 기능인 KoBERT 기반 감정분석의 성능을 확인하기위해 텍스트 분류 모델로 널리 사용되고 있는 LSTM, Bi-LSTM, GRU 모델 별 성능지표들과 비교 분석한다. 성능 평가결과 KoBERT 의 정확도가 다른 분류군의 정확도보다 평균 31.4% 높은 성능을 보였고, 이 외의 지표에서도 비교적 높은 성능을 기록했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.