• Title/Summary/Keyword: koBERT

Search Result 76, Processing Time 0.025 seconds

Gender classification of Korean drama script lines using KoBERT (KoBERT를 활용한 한국 드라마 대본 대사 성별 구분)

  • Se-Hui Yi;Gum-Kyu Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.470-472
    • /
    • 2022
  • 최근 글로벌 OTT 서비스에서 한국드라마가 세계적 인기를 얻음에 따라 드라마 콘텐츠의 가치가 높아지고 있다. 드라마 대본은 드라마 제작에 있어서 핵심이 되는 데이터로, 특히 대사에는 인물의 특성이 잘 나타나 있다. 본 논문에서는 KoBERT 모델을 활용해 드라마 대사에서 인물의 특성 중 하나인 성별을 구분하고 실험 결과를 제시한다. KoBERT 모델로 대사의 성별을 분류한 뒤, 콘텐츠 분석과 인공지능 창작 측면에서의 활용 가능성에 대해 논의한다.

  • PDF

Comparison of KoBART and KoBERT models for Korean paper summarization (한국어 논문 요약을 위한 KoBART와 KoBERT 모델 비교*)

  • Jaesung Jun;Suan Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.562-564
    • /
    • 2022
  • 통신 기술의 발전으로 일반인들도 다양한 자료들을 인터넷에서 손쉽게 찾아볼 수 있는 시대가 도래하였다. 개인이 접근할 수 있는 정보량이 기하급수적으로 많아 짐에 따라, 이를 효율적으로 요약, 정리하여 보여주는 서비스들의 필요성이 높아지기 시작했다. 본 논문에서는, 자연어 처리 모델인 BART를 40GB 이상의 한국어 텍스트로 미리 학습된 한국어 언어 모델 KoBART를 사용한 한국어 논문 요약 모델을 제안하고, KoBART와 KoBERT 모델의 한국어 논문 요약 성능을 비교한다.

  • PDF

A Multi-task Self-attention Model Using Pre-trained Language Models on Universal Dependency Annotations

  • Kim, Euhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.39-46
    • /
    • 2022
  • In this paper, we propose a multi-task model that can simultaneously predict general-purpose tasks such as part-of-speech tagging, lemmatization, and dependency parsing using the UD Korean Kaist v2.3 corpus. The proposed model thus applies the self-attention technique of the BERT model and the graph-based Biaffine attention technique by fine-tuning the multilingual BERT and the two Korean-specific BERTs such as KR-BERT and KoBERT. The performances of the proposed model are compared and analyzed using the multilingual version of BERT and the two Korean-specific BERT language models.

How are they layerwisely 'surprised', KoBERT and KR-BERT? (KoBERT와 KR-BERT의 은닉층별 통사 및 의미 처리 성능 평가)

  • Choi, Sunjoo;Park, Myung-Kwan;Kim, Euhee
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.340-345
    • /
    • 2021
  • 최근 많은 연구들이 BERT를 활용하여, 주어진 문맥에서 언어학/문법적으로 적절하지 않은 단어를 인지하고 찾아내는 성과를 보고하였다. 하지만 일반적으로 딥러닝 관점에서 NLL기법(Negative log-likelihood)은 주어진 문맥에서 언어 변칙에 대한 정확한 성격을 규명하기에는 어려움이 있다고 지적되고 있다. 이러한 한계를 해결하기 위하여, Li et al.(2021)은 트랜스포머 언어모델의 은닉층별 밀도 추정(density estimation)을 통한 가우시안 확률 분포를 활용하는 가우시안 혼합 모델(Gaussian Mixture Model)을 적용하였다. 그들은 트랜스포머 언어모델이 언어 변칙 예문들의 종류에 따라 상이한 메커니즘을 사용하여 처리한다는 점을 보고하였다. 이 선행 연구를 받아들여 본 연구에서는 한국어 기반 언어모델인 KoBERT나 KR-BERT도 과연 한국어의 상이한 유형의 언어 변칙 예문들을 다른 방식으로 처리할 수 있는지를 규명하고자 한다. 이를 위해, 본 연구에서는 한국어 형태통사적 그리고 의미적 변칙 예문들을 구성하였고, 이 예문들을 바탕으로 한국어 기반 모델들의 성능을 놀라움-갭(surprisal gap) 점수를 계산하여 평가하였다. 본 논문에서는 한국어 기반 모델들도 의미적 변칙 예문을 처리할 때보다 형태통사적 변칙 예문을 처리할 때 상대적으로 보다 더 높은 놀라움-갭 점수를 보여주고 있음을 발견하였다. 즉, 상이한 종류의 언어 변칙 예문들을 처리하기 위하여 다른 메커니즘을 활용하고 있음을 보였다.

  • PDF

Emotion Analysis-Based AI Chatbot System Using GPT-3 and KoBERT (GPT-3와 KoBERT를 활용한 감정 분석 기반 AI 챗봇 시스템)

  • Junhyeon Kim;Mikyeong Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.367-368
    • /
    • 2023
  • 최근 챗봇 시스템은 급격한 발전과 함께 사용자와 자연스러운 대화를 할 수 있는 인공지능 기술의 필요성이 대두되고 있다. 기존의 챗봇 시스템은 대화 상황을 충분히 이해하지 못하거나, 학습된 데이터를 벗어나는 문장에 대한 일관성 있는 응답을 제공하지 못하는 한계가 있다. 본 논문에서는 GPT-3와 KoBERT를 활용하여 사용자의 감정 상태를 파악하고 해당 감정을 고려한 일관성 있는 대화를 제공하는 감정 분석 기반 챗봇 시스템을 제안한다. 이를 바탕으로 긍정적인 대화를 이어 나가는데 초점을 두어 자연스러운 대화가 가능할 것으로 기대된다.

  • PDF

Building Specialized Language Model for National R&D through Knowledge Transfer Based on Further Pre-training (추가 사전학습 기반 지식 전이를 통한 국가 R&D 전문 언어모델 구축)

  • Yu, Eunji;Seo, Sumin;Kim, Namgyu
    • Knowledge Management Research
    • /
    • v.22 no.3
    • /
    • pp.91-106
    • /
    • 2021
  • With the recent rapid development of deep learning technology, the demand for analyzing huge text documents in the national R&D field from various perspectives is rapidly increasing. In particular, interest in the application of a BERT(Bidirectional Encoder Representations from Transformers) language model that has pre-trained a large corpus is growing. However, the terminology used frequently in highly specialized fields such as national R&D are often not sufficiently learned in basic BERT. This is pointed out as a limitation of understanding documents in specialized fields through BERT. Therefore, this study proposes a method to build an R&D KoBERT language model that transfers national R&D field knowledge to basic BERT using further pre-training. In addition, in order to evaluate the performance of the proposed model, we performed classification analysis on about 116,000 R&D reports in the health care and information and communication fields. Experimental results showed that our proposed model showed higher performance in terms of accuracy compared to the pure KoBERT model.

Keyword and Emotional Analysis Diary Service Using KoNLPy and KoBERT (KoNLPy와 KoBERT를 활용한 키워드 및 감정분석 일기 서비스)

  • Lee, ChaeWon;Moon, Mikyeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.501-502
    • /
    • 2022
  • 최근 작성한 일기를 SNS에 올려 평범한 사람들이 음악, 음식, 사건 등 소소한 일상을 남기고 우울증 투병기를 공유하여 힘을 얻기도 하는 등 누가 시키지 않아도 일기를 작성하고 간직하는 사람들이 증가하고 있다. 이러한 변화로 일기는 하루의 일상을 기록하는 목적을 넘어 어떤 감정을 느꼈는지 알아차리고 자아를 성찰 및 탐구하는 단계로 발전하고 있다. 그러나 스스로 일기의 키워드를 분석하고 감정이 어떠한지 정확하게 아는 것은 어렵다. 이에 따라 본 논문에서는 제시한 문제를 해결하기 위한 방법으로 KoBERT와 KoNLPy를 활용한 키워드 및 감정분석 일기 서비스를 제안하였다. 본 연구의 키워드 및 감정분석 일기 서비스는 사용자가 무의식적으로 표현하는 텍스트 기반의 일기에서 자주 반복되는 키워드와 감정을 제공하여 자신의 감정상태를 쉽게 인지하고 되돌아볼 수 있도록 제작하였다.

  • PDF

Korean Ironic Expression Detector (한국어 반어 표현 탐지기)

  • Seung Ju Bang;Yo-Han Park;Jee Eun Kim;Kong Joo Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.3
    • /
    • pp.148-155
    • /
    • 2024
  • Despite the increasing importance of irony and sarcasm detection in the field of natural language processing, research on the Korean language is relatively scarce compared to other languages. This study aims to experiment with various models for irony detection in Korean text. The study conducted irony detection experiments using KoBERT, a BERT-based model, and ChatGPT. For KoBERT, two methods of additional training on sentiment data were applied (Transfer Learning and MultiTask Learning). Additionally, for ChatGPT, the Few-Shot Learning technique was applied by increasing the number of example sentences entered as prompts. The results of the experiments showed that the Transfer Learning and MultiTask Learning models, which were trained with additional sentiment data, outperformed the baseline model without additional sentiment data. On the other hand, ChatGPT exhibited significantly lower performance compared to KoBERT, and increasing the number of example sentences did not lead to a noticeable improvement in performance. In conclusion, this study suggests that a model based on KoBERT is more suitable for irony detection than ChatGPT, and it highlights the potential contribution of additional training on sentiment data to improve irony detection performance.

Comparison of Korean Classification Models' Korean Essay Score Range Prediction Performance (한국어 학습 모델별 한국어 쓰기 답안지 점수 구간 예측 성능 비교)

  • Cho, Heeryon;Im, Hyeonyeol;Yi, Yumi;Cha, Junwoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.3
    • /
    • pp.133-140
    • /
    • 2022
  • We investigate the performance of deep learning-based Korean language models on a task of predicting the score range of Korean essays written by foreign students. We construct a data set containing a total of 304 essays, which include essays discussing the criteria for choosing a job ('job'), conditions of a happy life ('happ'), relationship between money and happiness ('econ'), and definition of success ('succ'). These essays were labeled according to four letter grades (A, B, C, and D), and a total of eleven essay score range prediction experiments were conducted (i.e., five for predicting the score range of 'job' essays, five for predicting the score range of 'happiness' essays, and one for predicting the score range of mixed topic essays). Three deep learning-based Korean language models, KoBERT, KcBERT, and KR-BERT, were fine-tuned using various training data. Moreover, two traditional probabilistic machine learning classifiers, naive Bayes and logistic regression, were also evaluated. Experiment results show that deep learning-based Korean language models performed better than the two traditional classifiers, with KR-BERT performing the best with 55.83% overall average prediction accuracy. A close second was KcBERT (55.77%) followed by KoBERT (54.91%). The performances of naive Bayes and logistic regression classifiers were 52.52% and 50.28% respectively. Due to the scarcity of training data and the imbalance in class distribution, the overall prediction performance was not high for all classifiers. Moreover, the classifiers' vocabulary did not explicitly capture the error features that were helpful in correctly grading the Korean essay. By overcoming these two limitations, we expect the score range prediction performance to improve.

KoBERT-based for parents with disabilities Implementation of Emotion Analysis Communication Platform (장애아 부모를 위한 KoBERT 기반 감정분석 소통 플랫폼 구현)

  • Jae-Hyung Ha;Ji-Hye Huh;Won-Jib Kim;Jung-Hun Lee;Woo-Jung Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1014-1015
    • /
    • 2023
  • 많은 장애아 부모들은 양육에 대한 스트레스, 미래에 대한 걱정으로 심리적으로 상당한 중압감을 느낀다. 이에 비해 매년 증가하는 장애인 수에 비해 장애아 부모 및 가족의 심리적·정신적 문제를 해결하기 위한 프로그램이 부족하다.[1] 이를 해결하고자 본 논문에서는 감정분석 소통 플랫폼을 제안한다. 제안하는 플랫폼은 KoBERT 모델을 fine-tunning 하여 사용자의 일기 속 감정을 분석하여 장애아를 둔 부모 및 가족 간의 소통을 돕는다. 성능평가는 제안하는 플랫폼의 주요 기능인 KoBERT 기반 감정분석의 성능을 확인하기위해 텍스트 분류 모델로 널리 사용되고 있는 LSTM, Bi-LSTM, GRU 모델 별 성능지표들과 비교 분석한다. 성능 평가결과 KoBERT 의 정확도가 다른 분류군의 정확도보다 평균 31.4% 높은 성능을 보였고, 이 외의 지표에서도 비교적 높은 성능을 기록했다.