• 제목/요약/키워드: known concentration

Search Result 2,653, Processing Time 0.024 seconds

Characteristics of Concentration and Size Distribution of PAHs of Total Suspended Particulates in urban air (도시대기부유분진중 다환방향족 탄화수소의 농도 및 입경분포 특성)

  • 조기철;이승일;김달호;허귀석;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.57-63
    • /
    • 1994
  • In order to comprehension of the behaviour of PAHs in air which is known as carcinogens and/or mutagens suspended Particulates in ambient air were collected by Anderson air sampler from 1992. 6 to 1993. 5 in Seoul. Ten species of PAHs( Phen, An, Fl, R, Py, BaAn, BaP, Chry, BeP, DiB(a, h)An, I123p) were analyzed to understand monthly variations of PAHs distribution of PAHs concentration according to particle size, and correlation between PAHs and independent charactierstics of PAHs The highest concentration of TSP was 155.58$\mu\textrm{g}$/㎥ in May and the lowest was 60$\mu\textrm{g}$/㎥ in August. Concentration of TSP was more affected by coarse particles in spring, otherwise which was more affected by fine particles in winter. According to results of anaylsis of samples that were collected by Anderson air sampler, concentration of PAHs was more high in winter than that in summer. In almost samples collected by Anderson air sampler, concentration of PAHs was more high in coarse particles than in fine particles, but BaP well known as carcinogenic matter had more high concentration in fine particles(56-97.5%) than that in coarse particles(2.5-46%). Correlation between concentrations of TSP and PAHs was more high in fine Particles than in coarse Particles. Both fine particles and coarse particles have negative correaltion with radiation.

  • PDF

Measurement of Spray Deposit Amount Using Spectrophotometer and Food Dye as Tracer

  • Rhee, J.Y.;Ahn, S.Y.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.16-21
    • /
    • 2000
  • Measurement of spray deposit is necessary for evaluation of a chemical application technology. However it is not easy and time consuming. A simple method for measuring the deposition amount of spray using a tracer and a spectrophotometer was developed. Various materials were tested to determine an adequate tracer. Food dye was selected as a tracer, because it was cheep and easily treatable. Using NIRS(Near Infrared Reflection Spectrophotometer), a regression curves between maximum absorbance of a solution and concentration of the tracer were obtained. Yellow food dye solution showed a peak of spectrum at 452 nm, and absorbance of peak showed a tendency to increase as concentration increased. Green or pink food dye were tested and judged to be good tracers. However, tracer concentration should not exceed certain limits in order to measure maximum absorption. Using spraying liquid with known tracer concentration and known amount of washing liquid, spray deposit amount on real targets on leaves could be estimated at less than 13% error level.

  • PDF

Characteristics of Nano-Particles Exhausted from Diesel Passenger Vehicle with DPF

  • Park, Yong-Hee;Shin, Dae-Yewn
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.533-538
    • /
    • 2006
  • The nano-particles are known to influence the environmental protection and human health. The relationships between transient vehicle operation and nano-particle emissions are not well-known, especially for diesel passenger vehicles with DPF(Diesel Particulate Filter). In this study, two diesel passenger vehicles were measured on a chassis dynamometer test bench. The particulate matter (PM) emission of these vehicles was investigated by number and mass measurement. The mass of the total PM was evaluated using the standard gravimetric measurement method, and the total number concentrations were measured on a ECE15+EUDC driving cycle using Condensation Particle Counter (CPC). According to the investigation results, total number concentration was $1.14{\times}10^{11}$M and mass concentration was 0.71mg/km. About 99% of total number concentration was emitted during the $0{\sim}400s$ because of engine cold condition. In high temperature and high speed duration, the particulate matter was increased but particle concentration was emitted not yet except initial engine cold condition According to DPF performance deterioration, the particulate matter was emitted 2 times and particle concentration was emitted 32 times. Thus DPF performance deterioration affects particle concentration more than PM.

The antiwear performance of several organic phosphates from the aspect of interaction between polyolester base oil and additive (Polyolester base oils과의 상호작용에 의한 Organic Phosphates계 내하중첨가제의 마모방지 성능)

  • ;Masabumi Masuko
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.189-194
    • /
    • 1999
  • The antiwear performance of several organic phosphates ,such as tricrecylphosphate(TCP), tributylphosphate(TBP), diphenylhydrogenphosphate(DPHP) ,dissolved in polyol ester based oils is studied. These organic phosphates are well known for antiwear additive for lubricating oil that produce reacted surface protective film. These antiwear additives can drastically reduce wear with their concentration increasing, because the amount of additive adsorbed on metal sur(ace increases. But in the higher concentration region, the wear is increased by excessive and corrosive reaction of the metal surface with these additives. That is to say, there is an optimum concentration for minimum wear. The optimum concentration was different with the kinds of base oils and additives. Different polyolesters showed different optimum concentrations of the additive. The order of optimum concentration among the polyolesters was different with different phosphates. The order of the optimum concentration is shown that the effect of the concentration of additives on the antiwear performance. It can be explained by the interaction between additives and base oils using the solubility parameter.

  • PDF

Reverse tracking method for concentration distribution of solutes around 2D droplet of solutal Marangoni flow with artificial neural network (인공신경망을 통한 2D 용질성 마랑고니 유동 액적의 용질 농도 분포 역추적 기법)

  • Kim, Junkyu;Ryu, Junil;Kim, Hyoungsoo
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.32-40
    • /
    • 2021
  • Vapor-driven solutal Marangoni flow is governed by the concentration distribution of solutes on a liquid-gas interface. Typically, the flow structure is investigated by particle image velocimetry (PIV). However, to develop a theoretical model or to explain the working mechanism, the concentration distribution of solutes at the interface should be known. However, it is difficult to achieve the concentration profile theoretically and experimentally. In this paper, to find the concentration distribution of solutes around 2D droplet, the reverse tracking method with an artificial neural network based on PIV data was performed. Using the method, the concentration distribution of solutes around a 2D droplet was estimated for actual flow data from PIV experiment.

The Effect of Meteorological Factors on Variation and Temporal and Spatial Characteristics of $NO_2$ Concentration in Pusan Area (부산광역시에서의 $NO_2$농도 특성 및 기상 영향인자 분석)

  • 이화운;김유근;장난심;이용희
    • Journal of Environmental Science International
    • /
    • v.8 no.4
    • /
    • pp.465-471
    • /
    • 1999
  • The concentration of air pollution in a large city such as Pusan has been increased every years due to the increase on fuel consumption at factories and by vehicles as well as the gravitation of the population. In this study, we have analyzed $NO_2$ concentration data and various data of meteorological factors during 1994-1997 to investigate the characteristics of $NO_2$ concentration and how the high $NO_2$ concentration is generated under the meterological condition. According to the study, $NO_2$ peak concentration at most sites occured about 1h later after the rush hour. In the characteristics of emissions in sites, sinpyeong-dong was highly contributed to point source while the other sites were highly contributed to line source. The high $NO_2$ concentration had high generation probability when temperature contained typical seasonal characteristics and wind speed was low. Using the relationship between meteorological factors and the daily average $NO_2$ concentration, correlation analysis was practiced. the seasonal variation of the daily average $NO_2$ concentration was correlated with air temperature, solar radiation and wind speed, but the correlation coefficient between meteorological factors and the daily average $NO_2$ concentration was not so much high. Thus we have known that the daily average $NO_2$ concentration is partially explained by meteorological factors.

  • PDF

Oxidation of Soot Particles with O Radicals Generated in a AC Streamer Corona Discharge (AC 스트리머 코로나 방전으로 생성된 O 라디칼과 매연 입자의 산화반응)

  • Kim, Pil-Seung;Lee, Kyo-Seung;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • Carbon soot emission from combustion processes, especially from diesel engines, is a subject of growing concern since soot is known to seriously affect human health. Efforts have been made to oxidize soot particles utilizing Non-Thermal Plasma(NTP) techniques. When oxygen is carried into a plasma device, electrons generated by the plasma dissociate the oxygen, resulting in the formation of oxygen atoms. These highly activated atoms, called O radicals, are known as strong oxidizing agent. This paper presents concentration variations of CO and $CO_2$ at the exit of the plasma device, resulting from the soot oxidation by O radicals, with variations of inlet oxygen concentration, gas temperature, and gas flow rate. Based on the data, Arrehenious rate constants of reactions between C(s)+O and C(s)+O+O were proposed.

  • PDF

Characterization of Superoxide Dismutase in Lactococcus lactis

  • Chang, Woo-Suk;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.732-736
    • /
    • 1999
  • The superoxide dismutase (SOD) in Lactococcus lactis was measured quantitatively and qualitatively under various culture conditions. The L. lactis SOD was induced by oxidative stress. As the concentration of paraquat to produce superoxide radicals increased, the growth of L. lactis decreased with concomitant increase of SOD activity. The SOD activity was found to be growth-phase dependent: when aerobically grown cells entered to the stationary phase, the activity increased gradually until the late stationary phase. From inhibition studies, L. lactis SOD was found to be insensitive to KCN and $H_2O_2$ which are known to inhibit Cu/ZnSOD and FeSOD, respectively. Moreover, as the concentration of manganese in the medium increased, the activity of SOD also increased. These data strongly suggested that L. lactis possessed a single manganese-containing SOD (MnSOD). Finally, a putative sod gene fragment of 510 bp was identified in L. lactis using a polymerase chain reaction (PCR) with degenerate primers designed from the deduced DNA sequences of known SOD genes.

  • PDF

Development of a Sensitive Bioassay Method for Quorum Sensing Inhibitor Screening Using a Recombinant Agrobacterium tumefaciens

  • Kim Yeon Hee;Kim Young Hee;Kim Jung Sun;Park Sunghoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.322-328
    • /
    • 2005
  • Acylhomoserine lactones (AHLs) are known to be the triggering molecules in the quorum sensing mechanism of many gram-negative bacteria. In order to detect AHL inhibitors that are potential biofilm inhibitors, a convenient and sensitive bioassay was developed based on the $\beta$-galactosidase activity ($\beta$-GAL) of a recombinant Agrobacterium tumefaciens strain. A series of commercially available AHLs were tested for inducing $\beta$-GAL at varying concentrations in agar-plate and liquid cultures of the reporter strain. All AHLs tested exhibited a concentration­dependent induction, and octanoyl homoserine lactone (OHL) showed the highest sensitivity with a detection limit of 0.1 nM in the liquid culture assay. When fimbrolide, a known quorum sensing inhibitor, was added, induction of $\beta$-GAL by OHL was repressed. The repression at a constant OHL concentration was dependent on the fimbrolide concentration with the detection limit below 1 ppm, indicating that this assay is a sensitive method for screening AHL inhibitors.

Experimental Study on the Size Distribution of Diesel Particulate Matter (DPM) (디젤 입자상물질의 크기분포 특성에 관한 실험적 연구)

  • 연익준;권순박;이규원
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.11-17
    • /
    • 2002
  • Diesel particulate matter (DPM) is known to be one of the major harmful emissions produced by diesel engines. The majority of diesel particles are in the range of smaller than $I{\mu}\textrm{m}$. Because of their tiny volume, ultrafine diesel particles contribute very little to the total mass concentration which is currently regulated for automobile emissions. Diesel particles are known to have deleterious effects upon human health because they penetrate human respiratory tract and have negative effects on the health. The measurement of the number distribution of nanometer size particles (nanoparticles) in the diesel exhaust emission is important in order to evaluate their environmental and health impact, and to develop new types of diesel particulate filters. In this study, we directly sampled particulate matters emitted from a diesel truck mounted on the chassis dynamometer by a flow separator and dilution system, and measured the nanoparticles using two types of differential mobility analyzers combined with a Faraday cup electrometer (FCE) and a condensation particle counter (CPC). The particle size distributions were analyzed by changing engine operation condition, i.e. ratio of engine loading. The total number concentration of particles were increased with the engine loading ratio and the nanoparticles (less than 50nm) were affected by hydrocarbon (HC) concentration in the diesel exhaust.