• Title/Summary/Keyword: knowledge propagation

Search Result 165, Processing Time 0.026 seconds

Constraint Satisfaction Algorithm in Constraint Network using Simulated Annealing Method (Simulated Annealing을 이용한 제약 네트워크에서의 제약 충족방식에 관한 연구)

  • 차주헌;이인호;김재정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.589-594
    • /
    • 1997
  • We have already presented the constraint satisfaction algorithm which could solve the losed loop problem in constraint network by using local constraint propagation, variable elimination and constraint modularization. With this algorithm, we have implemented a knowledge-based system (intelligent CAD) for supporting machine design interactively. In this paper, we present newer constraint satisfaction algorithm which can solve inequalities or under-constrained problems in constraint network, interactively and efficiently. This algorithm is a hybrid type of using both declarative description (constraint represention) and optimization algorithm (Simulated Annealing), simultaneously. The under-constrained problems are represented by constraint networks and satisfied completely with this algorithm. The usefulness of our algorithm will be illustrated by the application to a gear design.

  • PDF

Preform Design of Backward Extrusion Based on Inference of Analytical Knowledge (해석적 지식 추론을 통한 후방 압출푸의 예비 성형체 설계)

  • 김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.84-87
    • /
    • 1999
  • This paper presents a preform design method that combines the analytic method and inference of known knowledge with neural network. The analytic method is a finite element method that is used to simulate backward extrusion with pre-defined process parameters. The multi-layer network and back-propagation algorithm are utilized to learn the training examples from the simulation results. The design procedures are utilized to learn the training examples from the simulation results. The design procedures are two methods the first the neural network infer the deformed shape from the pre-defined processes parameters. The other the network infer the processes parameters from deformed shape. Especially the latest method is very useful to design the preform From the desired feature it is possible to determine the processes parameters such as friction stroke and tooling geometry. The proposed method is useful for shop floor to decide the processes parameters and preform shapes for producing sound product.

  • PDF

Monitoring Systems of a Grinding Trouble Utilizing Neural Networks(2nd Report) (신경망 회로를 이용한 연삭가공의 트러블 검지(II))

  • Kwak, J.S.;Kim, G.H.;Ha, M.K.;Song, J.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.57-63
    • /
    • 1996
  • Monitoring of grinding troble occurring during the process is classified into the quantitative data which depends upon a sensor and the qualitative knowledge which relies upon an empirical knowledge. Since grinding operation is highly related with a large amount of functional parameters, it is actually deficulty in copying wiht the grinding troubles through the process. To cope with grinding trouble, it is an effective monitoring systems when occurring the grinding process. The use of neural networks is an effective method of detection and/or monitroing on the grinding trouble. In this paper, four parameters which are derived from the AE(Acoustic Emission) signatures are identified, and grinding monitoring system utilized a back propagation learning algorithm of PDP neural networks is presented.

  • PDF

Constraint satisfaction algorithm in constraint network using simulated annealing method (Simulated Annealing을 이용한 제약 네트워크에서의 제약 충족 방식에 관한 연구)

  • Cha, Joo-Heon;Lee, In-Ho;Kim, Jay J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.116-123
    • /
    • 1997
  • We have already presented the constraint satisfaction algorithm which could solve the closed loop porblem in constraint network by using local constraint propagation, variable elimination and constraint modularization. With this algorithm, we have implemented a knowledge-based system (intelligent CAD) for supporting machine design interactively. In this paper, we present newer constraint satisfaction algorithm which can solve inequalities or under-constrained problems in constraint network, interactively and effi- ciently. This algorithm is a hybrid type of using both declarative description (constraint representation) and optimization algorithm (Simulated Annealing), simultaneously. The under-constrained problems are represented by constraint networks and satisfied completely with this algorithm. The usefulness of our algorithm will be illustrated by the application to a gear design.

  • PDF

Bilinear Graph Neural Network-Based Reasoning for Multi-Hop Question Answering (다중 홉 질문 응답을 위한 쌍 선형 그래프 신경망 기반 추론)

  • Lee, Sangui;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.8
    • /
    • pp.243-250
    • /
    • 2020
  • Knowledge graph-based question answering not only requires deep understanding of the given natural language questions, but it also needs effective reasoning to find the correct answers on a large knowledge graph. In this paper, we propose a deep neural network model for effective reasoning on a knowledge graph, which can find correct answers to complex questions requiring multi-hop inference. The proposed model makes use of highly expressive bilinear graph neural network (BGNN), which can utilize context information between a pair of neighboring nodes, as well as allows bidirectional feature propagation between each entity node and one of its neighboring nodes on a knowledge graph. Performing experiments with an open-domain knowledge base (Freebase) and two natural-language question answering benchmark datasets(WebQuestionsSP and MetaQA), we demonstrate the effectiveness and performance of the proposed model.

A Hybrid Knowledge Representation Method for Pedagogical Content Knowledge (교수내용지식을 위한 하이브리드 지식 표현 기법)

  • Kim, Yong-Beom;Oh, Pill-Wo;Kim, Yung-Sik
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.4
    • /
    • pp.369-386
    • /
    • 2005
  • Although Intelligent Tutoring System(ITS) offers individualized learning environment that overcome limited function of existent CAI, and consider many learners' variable, there is little development to be using at the sites of schools because of inefficiency of investment and absence of pedagogical content knowledge representation techniques. To solve these problem, we should study a method, which represents knowledge for ITS, and which reuses knowledge base. On the pedagogical content knowledge, the knowledge in education differs from knowledge in a general sense. In this paper, we shall primarily address the multi-complex structure of knowledge and explanation of learning vein using multi-complex structure. Multi-Complex, which is organized into nodes, clusters and uses by knowledge base. In addition, it grows a adaptive knowledge base by self-learning. Therefore, in this paper, we propose the 'Extended Neural Logic Network(X-Neuronet)', which is based on Neural Logic Network with logical inference and topological inflexibility in cognition structure, and includes pedagogical content knowledge and object-oriented conception, verify validity. X-Neuronet defines that a knowledge is directive combination with inertia and weights, and offers basic conceptions for expression, logic operator for operation and processing, node value and connection weight, propagation rule, learning algorithm.

  • PDF

Advanced Design Environmental With Adaptive And Knowledge-Based Finite Elements

  • Haghighi, Kamyar;Jang, Eun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1222-1229
    • /
    • 1993
  • An advanced design environment , which is based on adaptive and knowledge -based finite elements (INTELMESH), has been developed. Unlike other approaches, INTEMMESH incorporates the information about the object geometry as well as the boundary and loading conditions to generate an ${\alpha}$-priori finite element mesh which is more refined around the critical regions of the problem domain. INTEMMESH is designed for planar domains and axisymmetric 3-D structures of elasticity and heat transfer subjected to mechanical and thermal loading . It intelligently identifies the critical regions/points in the problem domain and utilize the new concepts of substructuring and wave propagation to choose the proper mesh size for them. INTEMMESH generates well-shaped triangular elements by applying trangulartion and Laplacian smoothing procedures. The adaptive analysis involves the intial finite elements analyze and an efficient ${\alpha}$-posteriori error analysis involves the initial finite element anal sis and an efficient ${\alpha}$-posteriori error analysis and estimation . Once a problem is defined , the system automatically builds a finite element model and analyzes the problem though automatic iterative process until the error reaches a desired level. It has been shown that the proposed approach which initiates the process with an ${\alpha}$-priori, and near optimum mesh of the object , converges to the desired accuracy in less time and at less cost. Such an advanced design/analysis environment will provide the capability for rapid product development and reducing the design cycle time and cost.

  • PDF

A Study on the Measurements of Optical Parameters in Photosensitizer by Light Scattering (농도가 진한 매질에서 광증감제에 의한 광학적 파라미터측정에 관한 연구)

  • Kim, Ki-Jun;Lee, Jou-Joub
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.102-108
    • /
    • 2011
  • The study of wave propagation and scattering in biological media has become increasingly important in recent years. The propagation of light within tissues is an important problem that confronts the dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. In the clinical application of photodynamic therapy(PDT) and in photobiology, the photon deposition within a tissue determines the spatial distribution of photochemical reactions. Scattered light is measured as a function of the distance (r) between the axis of the incident beam and the detection spot. Consequently, knowledge of the photosensitizer(Chlorophyll-a) function that characterizes a phantom is measured. To obtain the results of scattering coefficients(${\mu}s$) of a turbid material from diffusion described by experimental approach. It was measured the energy fluency of photon radiation at the position of penetration depth. From fluorescence experimental method obtained the analytical expression for the scattered light as the values of $(I/I_o)_{wavelength}$ vs the distance between the center of the incident beam and optical fiber in terms of the condition of "in situ spectroscopy(optically thick)" and real time by fluorometric measurements. The result was compromised with transport of intensities though a random distribution of scatters.

Characterization of Transmission Properties of Two Common Interior Walls at UHF Bands (실내벽의 UHF 대역 전파 투과 특성 해석)

    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1876-1884
    • /
    • 1999
  • The next generation of wireless LAN AND PBX systems will make use of the unlicensecd band at 2.5 GHz. Deployment of these systems inside buildings requires and understanding of propagation characteristics within buildings. Because the wavelength is small compared to building dimensions, ray methods can be used to predict propagation, but they require knowledge of the transmission and reflection properties of walls. This paper reports on transmission measurements made at walls made of gypsum board on metal studs, and at concrete block walls using directive antennas. The measurements are found to give good agreement with theoretical results that account for the periodic nature of the wall structure.

  • PDF

Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.645-656
    • /
    • 2018
  • Importance of procuring adequate knowledge about the mechanical behavior of double-layered graphene sheets (DLGSs) incensed the authors to investigate wave propagation responses of mentioned element while rested on a visco-Pasternak medium under hygro-thermal loading. A nonlocal strain gradient theory (NSGT) is exploited to present a more reliable size-dependent mechanical analysis by capturing both softening and hardening effects of small scale. Furthermore, in the framework of a classical plate theory the kinematic relations are developed. Incorporating kinematic relations with the definition of Hamilton's principle, the Euler-Lagrange equations of each of the layers are derived separately. Afterwards, combining Euler-Lagrange equations with those of the NSGT the nonlocal governing equations are written in terms of displacement fields. Interaction of the each of the graphene sheets with another one is regarded by the means of vdW model. Then, a widespread analytical solution is employed to solve the derived equations and obtain wave frequency values. Subsequently, influence of each participant variable containing nonlocal parameter, length scale parameter, foundation parameters, temperature gradient and moisture concentration is studied by plotting various figures.