• Title/Summary/Keyword: knowledge flow

Search Result 599, Processing Time 0.03 seconds

The Earth Systems Perceptions about Water Cycle of the Elementary Pre-service Teachers (물의 순환에 대한 초등 예비 교사들의 지구 시스템적 인식)

  • Jeong, Jin-Woo;Kim, Yun-Ji
    • Journal of Korean Elementary Science Education
    • /
    • v.27 no.4
    • /
    • pp.319-327
    • /
    • 2008
  • The goal of this study is to examine the perceptions of pre-service teachers that directly affect the concepts and ways of the consideration of Earth systems by students studying the water cycle. A concept sketch method was applied to a survey involving 131 pre-service teachers. The survey was designed to analyze the perception of subordinate concepts of Earth systems from the applied components of the water cycle process and to code the applied concepts with components of the water cycle to the subordinate concepts of Earth systems that were the Hydrosphere, the Atmosphere, the Geosphere, and the Biosphere. The survey was designed to examine the perception of the water cycle from the perspective of Earth systems. The recognition by pre-service students was largely confined to components of the atmosphere and the hydrosphere. With regard to the water cycle process, all subjects surveyed recognized precipitation, and most of those expressed recognition of evaporation and condensation. Many of them recognized the surface flow, while they scarcely expressed knowledge of the underground flow.

  • PDF

Design of Pressure Injury Management Mobile Application Structure and User Interface (욕창관리 모바일 어플리케이션 구조 설계 및 사용자 인터페이스 구현)

  • Lee, Jisan;Kim, Jungjae;Lee, Yun Jin;Park, Seungmi
    • Journal of muscle and joint health
    • /
    • v.26 no.3
    • /
    • pp.223-231
    • /
    • 2019
  • Purpose: This study aimed to design user interfaces of a mobile application for managing pressure injury patients in a long-term care hospital based on the user's needs. Methods: To reflect users' needs in the mobile application, the user interfaces in this study were designed in five steps: brainstorming and mind mapping, persona and scenario, needs list and priority, a draft version of flow chart and user interfaces and expert review. These steps were conducted with a step nurse at a long-term care hospital, a professor who majored in nursing informatics, a professor who had lots of research experiences about pressure injury and a wound ostomy continence nurse. Results: Two personas, scenarios and needs' lists were derived. Listed Needs included the followings; Accurate staging of pressure injury; Appropriate management by staging; Acquisition of professional knowledge about pressure injury; Acquisition of easy pressure injury information through text, picture and video; and Sharing pressure injury information in unit. The structure, menus and features of the pressure injury mobile application were visualized with user flow based on two personas' scenarios and needs' lists. Conclusion: Our study suggests and visualizes the key features of the 'Pressure Injury Guide', a pressure injury management mobile application for nurses in a long-term care hospital, which can be utilized by nurses, application developers, and related researchers.

Development of a Convergent Teaching-Learning Materials based on Logic Gates using Water-flow for the Secondary Informatics Gifted Students (물의 흐름을 이용한 논리 게이트 기반 융합형 중등 정보과학 영재 교수·학습 자료 개발)

  • Lee, Hyung-Bong;Kwon, Ki-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.369-384
    • /
    • 2014
  • Since the start of gifted education in 2002, educational support system has now been established, and sufficient growth in quantitative aspects has been achieved in Korea. On the other hand, they report that there are insufficient points in terms of education quality. In other words, most of the gifted education simply expands knowledge by prior-learning. In order to improve the quality of gifted education, they should enhance critical-thinking and creativity able to apply interdisciplinary principles or phenomena for solving problems. In this study, we designed and developed a convergent teaching-learning materials based on the concept of integrated education, which explore the process that basic logic operations such as AND, OR, XOR do the role of computer cells. A survey result showed that student satisfaction(usefulness, understanding, interest) of the materials is significantly higher than that of other traditional learning topics, and the design intent was met.

The Study of the Aviation Industrial Technology Convergence through Patent analysis (특허 분석을 통한 항공산업 기술 융합성 연구)

  • Bae, Sung-Uk;Kwag, Dong-Gi;Park, Eun-Young
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.219-225
    • /
    • 2015
  • Nowadays, technologies are changing through industrial fusion and government & corporates need to predict the flow & direction of technologies. These flow & direction can be grasped through the analysis of patent information. The patent information uses the common classification codes in the world, and it is possible for the quantitative analysis based on objective data with the time information of technical area. The methods of patent analysis analyzed the technology fusion by using citation analysis & simultaneous classification analysis. This research analyzed patent information which used as an index to measure the technical innovation in the society based on knowledge, and would like to analyze technical trends and to describe the way of improvement in the future based on the aviation industry which is the representative fusion/complex industry.

Evaluation of Water Quality Prediction Models at Intake Station by Data Mining Techniques (데이터마이닝 기법을 적용한 취수원 수질예측모형 평가)

  • Kim, Ju-Hwan;Chae, Soo-Kwon;Kim, Byung-Sik
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.705-716
    • /
    • 2011
  • For the efficient discovery of knowledge and information from the observed systems, data mining techniques can be an useful tool for the prediction of water quality at intake station in rivers. Deterioration of water quality can be caused at intake station in dry season due to insufficient flow. This demands additional outflow from dam since some extent of deterioration can be attenuated by dam reservoir operation to control outflow considering predicted water quality. A seasonal occurrence of high ammonia nitrogen ($NH_3$-N) concentrations has hampered chemical treatment processes of a water plant in Geum river. Monthly flow allocation from upstream dam is important for downstream $NH_3$-N control. In this study, prediction models of water quality based on multiple regression (MR), artificial neural network and data mining methods were developed to understand water quality variation and to support dam operations through providing predicted $NH_3$-N concentrations at intake station. The models were calibrated with eight years of monthly data and verified with another two years of independent data. In those models, the $NH_3$-N concentration for next time step is dependent on dam outflow, river water quality such as alkalinity, temperature, and $NH_3$-N of previous time step. The model performances are compared and evaluated by error analysis and statistical characteristics like correlation and determination coefficients between the observed and the predicted water quality. It is expected that these data mining techniques can present more efficient data-driven tools in modelling stage and it is found that those models can be applied well to predict water quality in stream river systems.

Prediction of Fluid-borne Noise Transmission Using AcuSolve and OptiStruct

  • Barton, Michael;Corson, David;Mandal, Dilip;Han, Kyeong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.557-561
    • /
    • 2014
  • In this work, Altair Engineering's vibroacoustic modeling approach is used to simulate the acoustic signature of a simplified automobile in a wind tunnel. The modeling approach relies on a two step procedure involving simulation and extraction of acoustic sources using a high fidelity Computational Fluid Dynamics (CFD) simulation followed by propagation of the acoustic energy within the structure and passenger compartment using a structural dynamics solver. The tools necessary to complete this process are contained within Altair's HyperWorks CAE software suite. The CFD simulations are performed using AcuSolve and the structural simulations are performed using OptiStruct. This vibroacoustics simulation methodology relies on calculation of the acoustic sources from the flow solution computed by AcuSolve. The sources are based on Lighthill's analogy and are sampled directly on the acoustic mesh. Once the acoustic sources have been computed, they are transformed into the frequency domain using a Fast Fourier Transform (FFT) with advanced sampling and are subsequently used in the structural acoustics model. Although this approach does require the CFD solver to have knowledge of the acoustic simulation domain a priori, it avoids modeling errors introduced by evaluation of the acoustic source terms using dissimilar meshes and numerical methods. The aforementioned modeling approach is demonstrated on the Hyundai Simplified Model (HSM) geometry in this work. This geometry contains flow features that are representative of the dominant noise sources in a typical automobile design; namely vortex shedding from the passenger compartment A-pillar and bluff body shedding from the side view mirrors. The geometry also contains a thick poroelastic material on the interior that acts to reduce the acoustic noise. This material is modeled using a Biot material formulation during the structural acoustic simulation. Successful prediction of the acoustic noise within the HSM geometry serves to validate the vibroacoustic modeling approach for automotive applications.

  • PDF

Web-based QA Workflow System for Radioactive Waste Disposal (방사성 폐기물 처분연구의 QA절차에 따른 웹기반 문서처리 워크플로우 시스템 개발)

  • 김태운;고창성;서대희;이광욱;강철형;황용수;이연명
    • The Journal of Information Systems
    • /
    • v.12 no.1
    • /
    • pp.159-175
    • /
    • 2003
  • During the early stage of radioactive disposal programs, important issues related with quality assurance of data sets, methodologies, R&D procedures are recognized as important ones. This paper focused on the development of web-based workflow standards for the QA procedures of the radioactive waste disposal programs. The flow of process was analyzed based on workflow concepts proposed by the Workflow Management Coalition (WfMC). QA system is based on the principles of T2R3. T2R3 Workflow was used to standardize and restructure the business and/or work process in the industry or organization. The WfMC has identified five functional interfaces to a workflow service as part of its standardization program. They are composed of process definition interface, worklist handler, application program interface, interface between workflows, and system management. The task flow and QA program were defined based on the workflow ideas. QA procedures for the R&D results of radiation disoposal were analyzed following the reference model of workflow. In addition, six program run list were created and implemented. The creation, revision, and approval of the test data were designed to be inplemented on the web environment. Through this system, R&D procedures such as planning, research, documentation, internal review and future independent peer review processes could be well organized and stored more systematically on the database and knowledge base. This will encourage the usage and data sharing between interested parties through it's clear and transparent workflow standards.

  • PDF

Numerical Study on Mode Transition in a Scramjet Engine (스크램제트 엔진에서의 모드 천이에 관한 수치해석 연구)

  • Ha, Jeong Ho;Das, Rajarshi;Ladeinde, Foluso;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.21-31
    • /
    • 2017
  • In the present study, theoretical and numerical analyses have been carried out to investigate the detailed flow characteristics during the mode transition. The theoretical analysis rearranged the knowledge of gasdynamics and the previous studies, and the numerical analysis has conducted to solve the 2D unsteady compressible Navier-Stokes equations with a fully implicit finite volume scheme. To validate the numerical analysis, the experiment was compared with it. The total temperature at the inlet of isolator and the hydrogen fuel equivalent ratio were changed to investigate their effects on the mode transition phenomenon. As the results, the numerical analysis reproduced well the experiment qualitatively, the increment in the hydrogen fuel equivalent ratio induced the scram-mode to ram-mode transition which is discontinuous with a non-allowable region, and the variation in the total temperature changed the boundary of the mode transition.

Wind profile management and blockage assessment for a new 12-fan Wall of Wind facility at FIU

  • Aly, Aly Mousaad;Chowdhury, Arindam Gan;Bitsuamlak, Girma
    • Wind and Structures
    • /
    • v.14 no.4
    • /
    • pp.285-300
    • /
    • 2011
  • Researchers at the International Hurricane Research Center (IHRC), Florida International University (FIU), are working in stages on the construction of a large state-of-the-art Wall of Wind (WoW) facility to support research in the area of Wind Engineering. In this paper, the challenges of simulating hurricane winds for the WoW are presented and investigated based on a scale model study. Three wind profiles were simulated using airfoils, and/or adjustable planks mechanism with and without grids. Evaluations of flow characteristics were performed in order to enhance the WoW's flow simulation capabilities. Characteristics of the simulated wind fields are compared to the results obtained from a study using computational fluid dynamics (CFD) and also validated via pressure measurements on small-scale models of the Silsoe cube building. Optimal scale of the test model and its optimal distance from the WoW contraction exit are determined - which are two important aspects for testing using an open jet facility such as the WoW. The main objective of this study is to further the understanding of the WoW capabilities and the characteristics of its test section by means of intensive tests and validations at small scale in order to apply this knowledge to the design of the full-scale WoW and for future wind engineering testing.

A Study on Improvement of Extrudability for Extrusion Process of Heat Sink (방열판 직접압출공정의 성형성 향상에 관한 연구)

  • 이정민;김병민;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.422-428
    • /
    • 2004
  • At present, the design of extrusion dies and operation in extrusion companies are primarily based on trial and error. The experience of the die designer, the press operator and the die corrector determine the performance of the extrusion die and the efficiency of the process. In order to produce defect-free products of desirable quality in terms of strength, surface quality and geometrical dimensions, it is important to obtain more knowledge of the processes that occur during extrusion. Recently, to reduce the costs of designing and manufacturing of extrusion dies, and to ensure the quality of the extruded products, numerical simulation for extrusion processes such as FEM (finite element method) is applied increasingly and becomes a very important tool for the design and development of new products. However, most of the studies about FE simulation have been accomplished for simple geometry and low extrusion ratio in the filed of steady metal flow conditions. The extruded products of AI alloy in industrial practice involve complicated sectional geometry. This study was designed to reduce the time of die design and manufacturing in the extrusion process using FEM simulation. FEM simulations of extrusion process were performed in non-steady states conditions by changing weld plate included in extrusion die set. Product which was employed in this study is heat sink that has been used in the parts of heat exchanger of electric circuits. It is generally applied for aluminum or its alloys due to heat efficiency and easy production of complicated shapes, and manufactured by extrusion process. The simulated results showed that weld plate shape in extrusion dies influences meta] flow and dimensional accuracy of products.