• Title/Summary/Keyword: knowledge extraction

Search Result 388, Processing Time 0.027 seconds

Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism (하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출)

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

TAKES: Two-step Approach for Knowledge Extraction in Biomedical Digital Libraries

  • Song, Min
    • Journal of Information Science Theory and Practice
    • /
    • v.2 no.1
    • /
    • pp.6-21
    • /
    • 2014
  • This paper proposes a novel knowledge extraction system, TAKES (Two-step Approach for Knowledge Extraction System), which integrates advanced techniques from Information Retrieval (IR), Information Extraction (IE), and Natural Language Processing (NLP). In particular, TAKES adopts a novel keyphrase extraction-based query expansion technique to collect promising documents. It also uses a Conditional Random Field-based machine learning technique to extract important biological entities and relations. TAKES is applied to biological knowledge extraction, particularly retrieving promising documents that contain Protein-Protein Interaction (PPI) and extracting PPI pairs. TAKES consists of two major components: DocSpotter, which is used to query and retrieve promising documents for extraction, and a Conditional Random Field (CRF)-based entity extraction component known as FCRF. The present paper investigated research problems addressing the issues with a knowledge extraction system and conducted a series of experiments to test our hypotheses. The findings from the experiments are as follows: First, the author verified, using three different test collections to measure the performance of our query expansion technique, that DocSpotter is robust and highly accurate when compared to Okapi BM25 and SLIPPER. Second, the author verified that our relation extraction algorithm, FCRF, is highly accurate in terms of F-Measure compared to four other competitive extraction algorithms: Support Vector Machine, Maximum Entropy, Single POS HMM, and Rapier.

Grammatical Structure Oriented Automated Approach for Surface Knowledge Extraction from Open Domain Unstructured Text

  • Tissera, Muditha;Weerasinghe, Ruvan
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.113-124
    • /
    • 2022
  • News in the form of web data generates increasingly large amounts of information as unstructured text. The capability of understanding the meaning of news is limited to humans; thus, it causes information overload. This hinders the effective use of embedded knowledge in such texts. Therefore, Automatic Knowledge Extraction (AKE) has now become an integral part of Semantic web and Natural Language Processing (NLP). Although recent literature shows that AKE has progressed, the results are still behind the expectations. This study proposes a method to auto-extract surface knowledge from English news into a machine-interpretable semantic format (triple). The proposed technique was designed using the grammatical structure of the sentence, and 11 original rules were discovered. The initial experiment extracted triples from the Sri Lankan news corpus, of which 83.5% were meaningful. The experiment was extended to the British Broadcasting Corporation (BBC) news dataset to prove its generic nature. This demonstrated a higher meaningful triple extraction rate of 92.6%. These results were validated using the inter-rater agreement method, which guaranteed the high reliability.

Comparative Study of Knowledge Extraction on the Industrial Applications

  • Woo, Young-Kwang;Bae, Hyeon;Kim, Sung-Shin;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1338-1343
    • /
    • 2003
  • Data is the expression of the language or numerical values that show some characteristics. And information is extracted from data for the specific purposes. The knowledge is utilized as information to construct rules that recognize patterns and make decisions. Today, knowledge extraction and application of the knowledge are broadly accomplished to improve the comprehension and to elevate the performance of systems in several industrial fields. The knowledge extraction could be achieved by some steps that include the knowledge acquisition, expression, and implementation. Such extracted knowledge can be drawn by rules. Clustering (CU, input space partition (ISP), neuro-fuzzy (NF), neural network (NN), extension matrix (EM), etc. are employed for expression the knowledge by rules. In this paper, the various approaches of the knowledge extraction are examined by categories that separate the methods by the applied industrial fields. Also, the several test data and the experimental results are compared and analysed based upon the applied techniques that include CL, ISP, NF, NN, EM, and so on.

  • PDF

An Ontology-based Knowledge Management System - Integrated System of Web Information Extraction and Structuring Knowledge -

  • Mima, Hideki;Matsushima, Katsumori
    • Proceedings of the CALSEC Conference
    • /
    • 2005.03a
    • /
    • pp.55-61
    • /
    • 2005
  • We will introduce a new web-based knowledge management system in progress, in which XML-based web information extraction and our structuring knowledge technologies are combined using ontology-based natural language processing. Our aim is to provide efficient access to heterogeneous information on the web, enabling users to use a wide range of textual and non textual resources, such as newspapers and databases, effortlessly to accelerate knowledge acquisition from such knowledge sources. In order to achieve the efficient knowledge management, we propose at first an XML-based Web information extraction which contains a sophisticated control language to extract data from Web pages. With using standard XML Technologies in the system, our approach can make extracting information easy because of a) detaching rules from processing, b) restricting target for processing, c) Interactive operations for developing extracting rules. Then we propose a structuring knowledge system which includes, 1) automatic term recognition, 2) domain oriented automatic term clustering, 3) similarity-based document retrieval, 4) real-time document clustering, and 5) visualization. The system supports integrating different types of databases (textual and non textual) and retrieving different types of information simultaneously. Through further explanation to the specification and the implementation technique of the system, we will demonstrate how the system can accelerate knowledge acquisition on the Web even for novice users of the field.

  • PDF

Design and Construction of a NLP Based Knowledge Extraction Methodology in the Medical Domain Applied to Clinical Information

  • Moreno, Denis Cedeno;Vargas-Lombardo, Miguel
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.376-380
    • /
    • 2018
  • Objectives: This research presents the design and development of a software architecture using natural language processing tools and the use of an ontology of knowledge as a knowledge base. Methods: The software extracts, manages and represents the knowledge of a text in natural language. A corpus of more than 200 medical domain documents from the general medicine and palliative care areas was validated, demonstrating relevant knowledge elements for physicians. Results: Indicators for precision, recall and F-measure were applied. An ontology was created called the knowledge elements of the medical domain to manipulate patient information, which can be read or accessed from any other software platform. Conclusions: The developed software architecture extracts the medical knowledge of the clinical histories of patients from two different corpora. The architecture was validated using the metrics of information extraction systems.

Intelligent Methods to Extract Knowledge from Process Data in the Industrial Applications

  • Woo, Young-Kwang;Bae, Hyeon;Kim, Sung-Shin;Woo, Kwang-Bang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.194-199
    • /
    • 2003
  • Data are an expression of the language or numerical values that show some features. And the information is extracted from data for the specific purposes. The knowledge is utilized as information to construct rules that recognize patterns or make a decision. Today, knowledge extraction and application of that are broadly accomplished for the easy comprehension and the performance improvement of systems in the several industrial fields. The knowledge extraction can be achieved by some steps that include the knowledge acquisition, expression, and implementation. Such extracted knowledge is drawn by rules with data mining techniques. Clustering (CL), input space partition (ISP), neuro-fuzzy (NF), neural network (NN), extension matrix (EM), etc. are employed for the knowledge expression based upon rules. In this paper, the various approaches of the knowledge extraction are surveyed and categorized by methodologies and applied industrial fields. Also, the trend and examples of each approaches are shown in the tables and graphes using the categories such as CL, ISP, NF, NN, EM, and so on.

Rule Extraction from Neural Networks : Enhancing the Explanation Capability

  • Park, Sang-Chan;Lam, Monica-S.;Gupta, Amit
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.2
    • /
    • pp.57-71
    • /
    • 1995
  • This paper presents a rule extraction algorithm RE to acquire explicit rules from trained neural networks. The validity of extracted rules has been confirmed using 6 different data sets. Based on experimental results, we conclude that extracted rules from RE predict more accurately and robustly than neural networks themselves and rules obtained from an inductive learning algorithm do. Rule extraction algorithm for neural networks are important for incorporating knowledge obtained from trained networks into knowledge based systems. In lieu of this, the proposed RE algorithm contributes to the trend toward developing hybrid and versatile knowledge-based system including expert systems and knowledge-based decision su, pp.rt systems.

  • PDF

Web Document-based Associate Knowledge Extraction Method : Applying to Bioinformatics (웹 도큐먼트 기반 연관 지식 추출 기법 : 생명정보분야에의 적용)

  • 문현정;김교정
    • Journal of Internet Computing and Services
    • /
    • v.2 no.5
    • /
    • pp.9-19
    • /
    • 2001
  • In this paper. we develop associate knowledge extraction method for finding and expanding user preference knowledge automatically from web document database. To reflect user interest or preferences, agent explores and extracts relevant information to central term involving the intent of users from the example documents. To do so, we apply association rule exploration data-mining method to the extraction of the relevant objects in the web documents. Also, to give the weighted-value to the extracted and relevant information, we present associate tag block-based weighting method. We applied to bioinformatics above associate knowledge extraction method to find related keywords.

  • PDF

EXPERT KNOWLEDGE GATING MECHANISM IN THE HIERARCHICAL MODULAR SYSTEM

  • Shim, Jeong-Yon;Hong, You-Sik
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.288-291
    • /
    • 2003
  • For the purpose of building the more efficient knowledge learning system, it is very important to make a good structure of the knowledge system first of all. The well designed knowledge system can make the stored knowledge to be easily accessed for knowledge acquisition and extraction. Expert knowledge can also play a good role for controlling. Accordingly, in this paper we propose the Hierarchical modular system with expert knowledge gating mechanism. This system consists of the mechanisms for knowledge acquisition, constructing the associative memory, knowledge inference and extraction according to the expert knowledge gating mechanism. We applied this system to the medical diagnostic area for classifying Virus(coxackie virus, echovirus, cold), Rhinitis(Nonallergic, allergic) and tested with symptom data

  • PDF