• Title/Summary/Keyword: knowledge and Information resource

Search Result 414, Processing Time 0.024 seconds

Policy Change and Innovation of Textile Industry in Daegu·Kyungbuk Region (대구·경북지역 섬유산업의 정책변화와 혁신과제)

  • Shin, Jin-Kyo;Kim, Yo-Han
    • Management & Information Systems Review
    • /
    • v.31 no.3
    • /
    • pp.223-248
    • /
    • 2012
  • This study analyses support policy and structural change of textile industry in Daegu Kyungbuk region, and suggests major issues for textile industry's innovation. In Daegu Kyungbuk, it was 1999 that a policy, so called Milano Project, in order to promote a textile industry was devised. In 2004, the Regional Industrial Promotion Plan was devised. The plan was born from a view point of establishing a regional innovation system and of promoting the innovative clusters under a knowledge based economy. After then, the Regional Industry Promotion Project or Regional Strategic Industry Promotion Project became a core of regional textile industrial policy. Research results indicated that the first stage Milano project (1999-2003) showed both positive and negative effects. There were no long-term development plan, clear vision and strategy. But, core industrial infrastructure for differentiated product development, such as New product Development Support Center and Dyeing Design Practical Application Center, was constructed. The second stage Daegu Textile Industry Promotion Plan (2004-2008) displayed a significant technological performance and new product sales with the assistance of Kyungbuk province. Also, textile industry revealed positive fruits such as financial structure, productivity, and profitability as a result of strong restructuring. In industrial structure, there was a important change from clothe textile material to industry textile material. Most of textile companies did not showed high capability in CEO's technology innovation intention, entrepreneurship, R&D and human resource competency in compare with other industry. We suggested that Daegu Kyungbuk has to select and concentrate on the high-tech textile material and living textile for sustainable development and competitiveness. We also proposed a confidence and cooperation based innovation network and company oriented innovation cluster.

  • PDF

Analysis of Spectral Reflectance Characteristic Change during Growing Status of Rice Plants using Spectroradiometer (스펙트로레디오메터를 이용한 벼 생장시기의 분광반사 특성 변화 분석)

  • Jang, Se-Jin;Suh, Ae-Sook;Kim, Pan-Gi;Yun, Jin-Il
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.3
    • /
    • pp.12-19
    • /
    • 2000
  • Knowledge for reflectance characteristic of interesting targets will provide us with actual application of remote sensing on agriculture. In this study, we have measured and analyzed reflectivity characteristics based on growing status from transplanting time to harvesting time. Rice paddies transplant into 3 fields at 20, May, 1999. Measurement of reflectivity characteristics were carried out with a portable spectroradiometer for frequencies from 300nm to 1100nm during the time period from 11:00 AM to 01:00 PM of clear sky and calm a day. The measurements for a day repeated 3 times(also, 3 times to each measurement)for reliable values. In result, we found that averaged reflectivity of visible range has about 2.34% - 2.55% in blue region(400nm-498nm), about 5.05% - 6.01% in green region(500nm-598nm) and about 4.21% - 5.24% in red region(600nm-698nm). It must be noted that the more rice canopy grows, the more spectral reflectivity decreases in visible region. Also, we separated infrared region into two cases - One case is increasing region with 700nm-780nm, the other is fixed region with 800nm-1100nm. Averaged reflectivity of these regions has about 22.3% - 23.0% in increasing region, about 29.4% - 33.1% in fixed region. It must be noted that more rice canopy grows, the more spectral reflectivity also increases up to 23, Aug. in infrared region. After 23, Aug, the reflectivity has a tendency toward decrease.

  • PDF

Prospective for Successful IT in Agriculture (일본 농업분야 정보기술활용 성공사례와 전망)

  • Seishi Ninomiya;Byong-Lyol Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.2
    • /
    • pp.107-117
    • /
    • 2004
  • If doubtlessly contributes much to agriculture and rural development. The roles can be summarized as; 1. to activate rural areas and to provide more comfortable and safe rural life with equivalent services to those in urban areas, facilitating distance education, tole-medicine, remote public services, remote entertainment etc. 2. To initiate new agricultural and rural business such as e-commerce, real estate business for satellite officies, rural tourism and virtual corporation of small-scale farms. 3. To support policy-making and evaluation on optimal farm production, disaster management, effective agro-environmental resource management etc., providing tools such as GIS. 4. To improve farm management and farming technologies by efficient farm management, risk management, effective information or knowledge transfer etc., realizing competitive and sustainable farming with safe products. 5. To provide systems and tools to secure food traceability and reliability that has been an emerging issue concerning farm products since serious contamination such as BSE and chicken flu was detected. 6. To take an important and key role for industrialization of farming or lam business enterprise, combining the above roles.

Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.