• Title/Summary/Keyword: knocking / chemiluminescence

Search Result 5, Processing Time 0.021 seconds

An Investigation of a Stratified Charge Mixture's HCCI Combustion Processes Using a Rapid Compression Machine (급속압축장치를 이용한 HCCI기관에서 층상혼합기에 의한 압력상승률의 저감효과에 대한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2010
  • The introduction of mixture heterogeneity has been considered to be one of the ways to avoid knocking, as it reduces the pressure rise rate in HCCI Combustion. The purpose of this research was to investigate the effects of heterogeneity, in particular thermal stratification and fuel strength stratification, on HCCI Combustion fueled with DME and n-Butane. Thermal stratification is formed in the Combustion Chamber of a Rapid Compression Machine with three kinds of pre-mixture, each with different properties. The stratified charge mixture was adiabatically compressed, throughout which cylinder gas pressure and two-dimensional chemiluminescence images were measured and analyzed.

Potential of Fuel Stratification for Reducing Pressure Rise Rate in HCCI Engines (HCCI 기관에 있어서의 층상 흡기를 통한 압력 상승률 저감에 대한 연구)

  • Lim, Ock-Taeck
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.7-14
    • /
    • 2010
  • This study investigated the effect on reducing the pressure rise rate(PRR) in HCCI Engine by the variation of mixing ratio in the pre-mixture of DME and n-Butane that has different auto-ignition characteristics. In addition to measure of gas pressure in the engine cylinder, chemiluminescence image using the optical accessible engine and numerical analysis with multi-zones model were used to assess the combustion at each local area in the combustion chamber. The maximum PRR changes depending on mixing condition of DME and n-Butane. When DME is stratified and n-Butane is distributed uniformly, maximum PRR becomes lowest which is about 0.25MPa/ms and it corresponds to 5deg. retarding of CA50.

An Investigation of HCCI Combustion Processes of Stratified Charge Mixture Using Rapid Compression Machine (급속압축 장치를 이용한 불균일 예혼합기가 HCCI연소에 미치는 영향에 관한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.8-14
    • /
    • 2009
  • Effect of heterogeneity of combustion chamber has been thought as one of the way to avoid dramatically generating heat in HCCI Combustion. The purpose of this research is to investigate the effect of heterogeneity, especially thermal stratification and fuel strength stratification on HCCI Combustion fueled with DME and n-Butane. Thermal stratification is formed in Combustion Chamber of Rapid Compression Machine with 3 Kinds of pre-mixture has different properties. The stratified charge mixture is adiabatic compressed and on that process, in cylinder gas pressure and two-dimensional chemiluminescence images are measured and analyzed.

Study on the Effect of Thermal Stratification on DME/n-Butane HCCI Combustion (열적성층화가 DME/n-Butane 예혼합압축자기착화연소에 미치는 영향에 관한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1035-1042
    • /
    • 2010
  • The thermal stratification effect has been thought as one of the way to avoid dramatically generating the heat from HCCI combustion. We investigate the effect of thermal stratification on HCCI combustion fueled by DME and n-Butane. The thermal stratification occurs in a combustion chamber of a rapid compression machine with premixture by buoyancy effect that is made of fuel and air. The premixture is then adiabatically compressed, and during the process, the in-cylinder gas pressure is measured and two-dimensional chemiluminescence images are prepared and analyzed. Under the thermal stratification, the LTR starting time and the HTR starting time are advanced than that of homogeneous case. Further, the LTR period and the luminosity duration under homogeneous conditions are shorter than the corresponding quantities under stratified conditions. Additionally, under stratified conditions, the brightest luminosity intensity is delayed longer than that of homogeneous condition.

Research about Thermal Stratification Effect on HCCI Combustion Fueled with Primary Reference Fuel (예혼합기의 열적성층화가 PRF연료의 예혼합압축자기착화에 미치는 영향)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.157-163
    • /
    • 2008
  • The HCCI combustion mode poses its own set of narrow engine operating by knocking. In order to solve this, inhomogeneity method of mixture and temperature is suggested. The purpose of this research is to get fundamental knowledge about the effect of thermal stratification on HCCI combustion of PRF -Air mixture. The temperature stratification is made by buoyancy effect in combustion chamber of RCM. The analysis items are pressure, temperature of in-cylinder gas and combustion duration. In addition, the structure of flames using the two dimensional chemiluminescence's images by a framing camera are analyzed. Under stratification, the LTR starting time and the HTR starting time are advanced than that of homogeneous. Further, the LTR period of homogeneous conditions became shorter than that of the stratified conditions. With the case of homogeneous condition, the luminosity duration becomes shorter than the case of stratified condition. Additionally, under stratified condition, the brightest luminosity intensity is delayed longer than at homogeneous condition.