• Title/Summary/Keyword: knee joint moment

Search Result 153, Processing Time 0.034 seconds

Thermotherapy and Dynamic Warm-up on the Kinetic Parameters during Drop-landing (드롭랜딩 시 국소부위 온열처치와 동적 준비운동이 하지의 운동역학적 변인에 미치는 영향)

  • Kim, Sungmin;Song, Jooho;Han, Sanghyuk;Moon, Jeheon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.297-307
    • /
    • 2021
  • Objective: The aim of this study was to analyze kinetic variables between thermotherapy and dynamic warm-up during drop-landing. Method: Twenty male healthy subjects (Age: 21.85 ± 1.90 years, Height: 1.81 ± 0.06 cm, Weight: 68.5 ± 7.06 kg) underwent three treatments applied on the thermotherapy of femoral muscles and a dynamic warm-up. The thermotherapy was performed for 15 minutes while sitting in a chair using an electric heating pad equipped with a temperature control device. Dynamic warm-up performed 14 exercise, a non-treatment was sitting in a chair for 15 minutes. Core temperature measurements of all subjects were performed before landing at a height of 50 cm. During drop-landing, core temperature, joint angle, moment, work of the sagittal plane was collected and analyzed. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was Bonferroni. Results: Results indicated that Thermotherapy was increased temperature than other treatments (p = .000). During drop-landing, hip joint of dynamic warm-up was slower for angular velocity (p < .005), and left ankle joint was fastest than other treatments (p = .004). Maximum joint moment of dynamic warm-up was smaller for three joints (hip extension: p = .000; knee flexion/extension: p = .001/.000; ankle plantarflexion: p = .000). Negative work of dynamic warm-up was smaller than other treatments (p = .000). Conclusion: In conclusion, the thermotherapy in the local area doesn't affect the eccentric contraction of the thigh. The dynamic warm-up treatment minimized the joint moment and negative work of the lower joint during an eccentric contraction, it was confirmed that more active movement was performed than other treatment methods.

A Musculoskeletal Model for Biomechanical Analysis of Transfemoral Amputees Climbing Stairs

  • Bae, Tae-Soo;Kim, Shin-Ki;Mun, Mu-Seong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.30-33
    • /
    • 2008
  • Understanding the characteristics of amputee gait is key in developing more advanced prostheses. The aim of this study was to quantitatively analyze a stair-climbing task for transfemoral amputees with a prosthesis and to predict the muscle forces and joint moments at musculoskeletal joints using a dynamic analysis. A three-dimensional musculoskeletal model of the lower extremities was constructed from a gait analysis using transformation software for two transfemoral amputees and ten healthy people. The measured ground reaction forces and kinematical data of each joint from the gait analysis were used as input data for an inverse dynamic analysis. Dynamic analyses of an transfemoral amputee climbing stairs were performed using musculoskeletal models. The results showed that the summed muscle forces of the hip extensor of an amputated leg were greater than those of a sound leg. The opposite was true at the hip abductor and knee flexor of an amputated leg. We also found that higher moments at the hip and knee joints of the sound leg were required to overcome the flexion moment caused by the body weight and amputated leg. Dynamic analyses using musculoskeletal models may be a useful means to predict muscle forces and joint moments for specific motion tasks related to rehabilitation therapy.

Kinematics and Kinetics of the Lower Limbs of a Walking Shoe with a Plate Spring and Cushioning Elements in the Heel during Walking

  • Park, Seung-Bum;Stefanyshyn, Darren;Pro, Stergiou;Fausto, Panizzolo;Kim, Yong-Jae;Lee, Kyung-Deuk
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.13-23
    • /
    • 2010
  • The purposes of this study was to investigate the biomechanical influence of the walking shoe with a plate spring in the heel and interchangeable heel cushioning elements. Eighteen subjects walked in three conditions: 1) the walking shoes Type A-1 with a soft heel insert, 2) the Type A-2 shoe with a stiff heel insert, 3) a general walking shoe(Type B). Ground reaction forces, leg movements, leg muscle activity and ankle, knee and hip joint loading were measured and calculated during overground walking. During walking, the ankle is a few degrees more dorsiflexed during landing and the knee is slightly more flexed during takeoff with the Type A shoes. As a result of the changes in the walking movement, the ground reaction forces are applied more quickly and the peak magnitudes are higher. Muscle activity of the quadricep, hamstring and calf muscles decrease during the first 25% of the stance phase when walking in the Type A shoes. The resultant joint moments at the ankle, knee and hip joints decrease from 30-40% with the largest reductions occurring during landing.

A Statistical Analysis of Joint Moments Acting on Men Performing a Seated Dynamic Task (앉은 자세에서 동적 작업을 수행할 때 작용하는 관절 모멘트의 통계학적 해석)

  • Jung, Ho-Il;Son, Kwon
    • Progress in Medical Physics
    • /
    • v.2 no.2
    • /
    • pp.161-173
    • /
    • 1991
  • A statistical approach was carried out to analyze joint moments acting on the six subjects performing a right-handed seated task. The dynamic task analyzed consisted of moving a hand-held weight of lkg mass back and forth in front of a subject's chest at the shoulder level in an upright seated position. We used experimental data obtained in the Biomechanics Laboratory of the University of Michigan. Based on the acquired data from three trials by each subject, moments were calculated using a 3-dimensional biomechanical model at such articulations as wrist, elbow, shoulder, the third lumbar spine, hip, knee, and ankle joints. The linear correlation and the two way analysis of variance were applied to the calculated joint moments in order to investigate inter-subject and inter-trial varations. The results obtained showed that the largest magnitude and deviation of moment was found at the third lumbar spine, that any linear relationship could not be found between moment and its equivalents attempted in this study, and that the maximum value and deviation of moment acting on each joint were statistically the same for all three trials but those were statistically not the same for all six subjects.

  • PDF

Kinematic Analysis of Back Somersault Pike According to Skill Level in Platform Diving

  • Park, Jiho;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.157-164
    • /
    • 2017
  • Objective: The purpose of this study was to investigate kinematic differences in back pike somersault in platform diving according to skill level and to apply the findings to improve performance. Method: Korean divers participating in this study were divided into a skilled group (age: $21.6{\pm}4.16y$, height: $1.68{\pm}0.03m$, weight: $62.0{\pm}3.94kg$, career: $12.6{\pm}5.13y$) and a less-skilled group (age: $20.6{\pm}2.7y$, height: $1.72{\pm}0.05m$, weight: $64.8{\pm}6.76kg$, career: $12.2{\pm}2.49y$) and an independent t-test was performed to analyze differences between groups at the moment of takeoff. Results: The two groups showed significant differences in displacement and velocity of center of mass (COM), takeoff angle, hip joint angle, knee joint angular velocity, and hip joint angular velocity at the takeoff (p<.05), and significant differences in displacement of COM, hip joint, and ankle joint during flight (p<.05). Conclusion: For a successful back pike, the COM should rise quickly in the vertical direction and the hip joint angle and angular velocity should increase. To improve performance, the back pike turn should be practiced on the ground before an attempt on a 10-m platform, to stretch the ankle and knee joints and enable quick flexion of the hip joint when turning in flight.

Kinematic Variables Comparison of Setter Toss Motion on Volleyball According to Toss Types (배구경기 세터 토스 동작의 운동학적 비교분석)

  • Chung, Nam-Ju;Kim, Jae-Pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2015
  • Purpose : The purpose of this study was to analyze setter toss motion kinematically according to toss types. Method : Dependent variables were elapsed time, vertical displacement of the body center, the projected speed of the ball, and differences of the joint angle to the target for four setters positioning. Result : There was no significant difference in the time but the ball contact time was shorter when the toss distance of P3 was longer. There was significant difference in the vertical displacement of COM (p<.05). The vertical displacement of COM showed that the vertical movement gradually decreased when the quick distance was longer. The vertical displacement of COM was difference (p<.05), also there was difference of the ball speed (p<.001) at the Release point(E4). There was significant difference in the knee joint angle at a certain moment among the Release(E4) and Landing point(E5)(p<.05). The hip joint was significant difference among the Apex(E2), Ball Touch(E3), Release(E4), and the Landing point(E5) on the surface(E2, E3, E4 p<.05; E5 p<.005). The shoulder angle was significant difference among the Ball Touch(E3), Release(E4) and the Landing point(E5) on the surface(E3, E4 p<.05; E5 p<.001). The elbow was significant difference in the Apex(E2) (p<.05). The wrist was significant difference in the Release(E4) (p<.05). Conclusion : If we find the clue to expect the direction of the setter's ball, we have to fine the clues in the Apex(E2) that hip join and elbow, Ball Touch(E3) that hip joint and shoulder joint, Release(E4) that wrist, elbow, hip joint, and knee joint.

Comparison of Lower Extremity Kinematics and Kinetics during Downhill and Valley-shape Combined Slope Walking

  • Jeong, Jiyoung;Shin, Choongsoo S.
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.161-166
    • /
    • 2016
  • Objective: The purpose of this study was to determine the knee and ankle joint kinematics and kinetics by comparing downhill walking with valley-shape combined slope walking. Method: Eighteen healthy men participated in this study. A three-dimensional motion capture system equipped with eight infrared cameras and a synchronized force plate, which was embedded in the sloped walkway, was used. Obtained kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of 0.05. Results: The knee flexion angle after the mid-stance phase, the mean peak knee flexion angle in the early swing phase, and the ankle mean peak dorsiflexion angle were greater during downhill walking compared with valley-shape combined slope walking (p < 0.001). Both the mean peak vertical ground reaction force (GRF) in the early stance phase and late stance phase during downhill walking were smaller than those values during valley-shape combined slope walking. (p = 0.007 and p < 0.001, respectively). The mean peak anterior GRF, appearing right after toe-off during downhill walking, was also smaller than that of valley-shape combined slope walking (p = 0.002). The mean peak knee extension moment and ankle plantar flexion moment in late stance phase during downhill walking were significantly smaller than those of valley-shape combined slope walking (p = 0.002 and p = 0.015, respectively). Conclusion: These results suggest that gait strategy was modified during valley-shape combined slope walking when compared with continuous downhill walking in order to gain the propulsion for lifting the body up the incline for foot clearance.

Changes in Impact Characteristics of the Body by Different Heel Strike Patterns during Running (달리기 시 착지 유형에 따른 인체에 미치는 충격의 변화)

  • Young-Seong Lee;Sang-Kyoon Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.164-174
    • /
    • 2023
  • Objective: The aim of this study was to quantitatively analyze the impact characteristics of the lower extremity on strike pattern during running. Method: 19 young subjects (age: 26.53 ± 5.24 yrs., height: 174.89 ± 4.75 cm, weight: 70.97 ± 5.97 kg) participated in this study. All subjects performed treadmill running with fore-foot strike (FFS), mid-foot strike (MFS), and rear-foot strike (RFS) to analyze the impact characteristics in the lower extremity. Impact variables were analyzed including vertical ground reaction force, lower extremity joint moments, impact acceleration, and impact shock. Accelerometers for measuring impact acceleration and impact shock were attached to the heel, distal tibia, proximal tibia, and 50% point of the femur. Results: The peak vertical force and loading rate in passive portion were significantly higher in MFS and FFS compared to FFS. The peak plantarflexion moment at the ankle joint was significantly higher in the FFS compared to the MFS and RFS, while the peak extension moment at the knee joint was significantly higher in the RFS compared to the MFS and FFS. The resultant impact acceleration was significantly higher in FFS and MFS than in RFS at the foot and distal tibia, and MFS was significantly higher than FFS at the proximal tibia. In impact shock, FFS and MFS were significantly higher than RFS at the foot, distal tibia, and proximal tibia. Conclusion: Running with 3 strike patterns (FFS, MFS, and RFS) show different impact characteristics which may lead to an increased risk of running-related injuries (RRI). However, through the results of this study, it is possible to understand the characteristics of impact on strike patterns, and to explore preventive measures for injuries. To reduce the incidence of RRI, it is crucial to first identify one's strike pattern and then seek appropriate alternatives (such as reducing impact force and strengthening relevant muscles) on that strike pattern.

Effects of Running Speed on Body Impact Acceleration and Biomechanical Variables (달리기 속도의 변화가 인체 충격 가속도와 생체역학적 변인에 미치는 영향)

  • Young-Seong Lee;Jae-Won Kang;Sang-Kyoon Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.2
    • /
    • pp.81-92
    • /
    • 2024
  • Objective: The purpose of this study was to analyze the impact acceleration, shock attenuation and biomechanical variables at various running speed. Method: 20 subjects (height: 176.15 ± 0.63 cm, weight: 70.95 ± 9.77 kg, age: 27.00 ± 4.65 yrs.) participated in this study. The subjects ran at four different speeds (2.5 m/s, 3.0 m/s, 3.5 m/s, 4.0 m/s). Three-dimensional accelerometers were attached to the distal tibia, sternum and head. Gait parameters, biomechanical variables (lower extremity joint angle, moment, power and ground reaction force) and acceleration variables (impact acceleration, shock attenuation) were calculated during the stance phase of the running. Repeated measures ANOVA was used with an alpha level of .05. Results: In gait parameters, decreased stance time, increasing stride length and stride frequency with increasing running speed. And at swing time 2.5 m/s and 4.0 m/s was decreased compared to 3.0 m/s and 3.5 m/s. Biomechanical variables statistically increased with increasing running speed except knee joint ROM, maximum ankle dorsiflexion moment, and maximum hip flexion moment. In acceleration variables as the running speed increased (2.5 m/s to 4.0 m/s), the impact acceleration on the distal tibia increased by more than twice, while the sternum and head increased by approximately 1.1 and 1.2 times, respectively. And shock attenuation (tibia to head) increased as the running speed increased. Conclusion: When running speed increases, the magnitude and increasing rate of sternum and head acceleration are lower compared to the proximal tibia, while shock attenuation increases. This suggests that limiting trunk movement and increasing lower limb movement effectively reduce impact from increased shock. However, to fully understand the body's mechanism for reducing shock, further studies are needed with accelerometers attached to more segments to examine their relationship with kinematic variables.

Energy Optimization of a Biped Robot for Walking a Staircase Using Genetic Algorithms

  • Jeon, Kweon-Soo;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.215-219
    • /
    • 2003
  • In this paper, we generate a trajectory minimized the energy gait of a biped robot for walking a staircase using genetic algorithms and apply to the computed torque controller for the stable dynamic biped locomotion. In the saggital plane, a 6 degree of freedom biped robot that model consists of seven links is used. In order to minimize the total energy efficiency, the Real-Coded Genetic Algorithm (RCGA) is used. Operators of genetic algorithms are composed of a reproduction, crossover and mutation. In order to approximate the walking gait, the each joint angle is defined as a 4-th order polynomial of which coefficients are chromosomes. Constraints are divided into equality and inequality. Firstly, equality constraints consist of position conditions at the end of stride period and each joint angle and angular velocity condition for periodic walking. On the other hand, inequality constraints include the knee joint conditions, the zero moment point conditions for the x-direction and the tip conditions of swing leg during the period of a stride for walking a staircase.

  • PDF