• Title/Summary/Keyword: kinetic resistance

Search Result 98, Processing Time 0.023 seconds

The Kinetic Analysis of the Lower Extremity Joints when Performing Uchi-mata by Uke's Posture in Judo (유도 허벅다리걸기 기술 발휘 시 받기 자세에 따른 하지관절의 kinetic 분석)

  • Yoon, Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.167-183
    • /
    • 2005
  • The purpose of this study was to analyze the kinetical variables of the lower extremity joints when performing uchimata(inner thigh reaping throw) by uke(receiver)'s two posture(shizenhon tai), jigohon tai), by voluntary resistance level(VRL) in judo. The subjects, who were for 3 male Korean national representative judokas(elite group : EG) and 3 male representative judokas of Korean University(non-elite group: NEG), and were filmed 4 DV video cameras(60fields/sec.), that posture of uke were shizenhon-tai (straight natural posture), jigohon-tai(straight defensive posture), VRL of uke was 0%. The selected trials were subject to 3-dimensional film motion analysis and ground reaction force(MRF) analysis. The kinetical variable of this study were temporal, postures( ankle and knee angle of attacking leg), that were computed through video film analysis, MRF at events were obtained from the ground-reaction force analysis by AMTI force plate system. When performing uchi-mata according to each posture and by VRL, from the data analysis and discussion, the conclusions were as follows : 1) Temporal variables : total time-required(TR) when performing uchi-mata was shown EG 0.13sec the shorter than NEG(o.77sec.) in shizenhon-tai. and EG 0.17sec the shorter than NEG(o.76sec.) in jigonhon-tai. Also, all of two groups' jigohon-tai(0.68sec.) were faster than shizenhon-tai(0.71 sec.). 2) The posture variables : The angle of ankle in attacking when performing were plantar flexion in EG, and dorsi flexion in NEG by shizenhon-tai and jigohon-tai posture. The angle of knee in attacking when performing were extension in EG and NEG, but range of extension in EG were larger than in NEG. 3) MRF : Vertical MRF when performing uchi-mata was shown the strongest in the 2nd stage of kake phase(2.23BW) by EG in both posture, and it was same value by NEG(2.23BW), but shizenhon-tai (2.28BW), jigohon-tai(1.64BW), respectively.

Transesterification Kinetics of Dimethyl Terephthalate with 1,4-Butanediol (디메틸테레프탈레이트와 1,4-부탄디올의 에스테르교환 반응 특성)

  • Cho, Impyo;Lee, Jinhong;Jo, Sanhwan;Cho, Minjung;Han, Myungwan;Kang, Kyungsuk
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.58-67
    • /
    • 2013
  • PBT (polybutylene terephthalate) has excellent mechanical properties such as low absorption, dimensional stability, abrasion resistance. It is used in manufacturing electronic components, the automobile part and the various precise parts. Bis (hydroxybutyl) terephthalate (BHBT) which is a PBT monomer, can be produced by transesterification reaction of DMT (dimethyl terephthalate) with 1,4-butandiol (BD). The kinetics of transesterification reaction of DMT with BD using zinc acetate as a catalyst was studied in a batch reactor. Previous kinetic studies was carried out in a semibatch reactor where generated methanol was removed so that reverse reactions were not considered in the kinetic expressions, resulting in inaccuracy of the kinetic model. Mathematical models of a batch reactor for the transesterification reaction were developed and used to characterize the reaction kinetics and the composition distribution of the reaction products. More accurate models than previous models was obtained and found to have a good agreement between model predictions and experimental data.

The Frictional Resistance Of Tin Ion-Plated Co-Cr Orthodontic Wire (TiN 피막처리된 Co-Cr계 교정용 선재의 마찰저항력)

  • Lee, Ho-Kyu;Kwon, Oh-Won;Kim, Kyo-Han
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.123-133
    • /
    • 1998
  • The effectiveness of TiN ion-plating was examined with TiN ion-plated Co-Cr wires(.016“, .016”x.022“) on three different types of bracket(TiN ion-plated metal bracket ceramic bracket and plastic bracket). Maximum static frictional forces and characteristic curves obtained from the frictional characteristic graph, were compared and surface roughness of wires and bracket slots before and after friction experiment was observed by SEM. The obtained results were as follows $\cdot$The frictional forces of TiN ion-plated wires were significantly lower than those of non ion-plated wires(p<0.05). $\cdot$On the effect of wire shape, the frictional forces of round wires were significantly lower than those of rectangular wires(p<0.05) $\cdot$As the result of the SEM observation on the wires and bracket slots after the friction experiment the surface of non ion-plated wires was rougher than that of TiN ion-plated ones. $\cdot$The difference between the static frictional forces and the kinetic frictional forces was not significant in case of the TiN ion-plated round ins, but the static frictional forces were a little higher than the kinetic frictional forces in the TiN ion-plated rectangular wires. $\cdot$The static frictional forces were much higher than the kinetic frictional forces in the case of non ion-plated wires.

  • PDF

Effects of Crack Velocity on Fracture Resistance of Concrete (콘크리트의 파괴저항에 대한 균열속도의 영향)

  • Yon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.52-59
    • /
    • 2003
  • Tests of concrete CLWL-DCB specimens had been conducted with displacement-controlled dynamic loading. The crack velocities for 381mm crack extension were 0.80 mm/sec ~ 215m/sec. The external work and the kinetic and strain energies were derived from the measured external load and load-point displacement. The fracture resistance of a running crack was calculated from the fitted curves of the fracture energy required for the tests. The standard error of the fracture energy was less than 3.2%. The increasing rate of the fracture resistance for 28 mm initial crack extension or micro-cracking was relatively small, and then the slope of the fracture resistance increased to the maximum value at 90∼145 mm crack extension depending on crack velocity. The maximum fracture resistance remained for 185 mm crack extension, and then the faster crack velocity showed the faster decreasing rate of the maximum fracture resistance. The maximum fracture resistance increased proportionally to the logarithm of the crack velocity from 142 N/m to 217 N/m when the crack velocity was faster than 0.273 m/sec. The maximum fracture resistance of the fastest tests was similar to the average fracture energy density of 215 N/m. To measure the fracture resistance of concrete, the stable crack extension should be larger than 90∼145 mm depending on crack velocity.

Desorption Characteristics and Bioavailability of Zn to Earthworm in Mine Tailings (광미내 Zn의 탈착 특성과 지렁이에 대한 생이용성)

  • Oh, Sang-Hwa;Shin, Won-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.4
    • /
    • pp.38-52
    • /
    • 2011
  • Sorption and sequential desorption experiments were conducted for Zn using a natural soil (NS) in background status by aging (1, 30 and 100 days). The sorption isotherm showed that Zn had high sorption capacity but low sorption affinity in NS. Sequential desorption was biphasic with appreciable amount of sorbed Zn residing in the desorption-resistant fraction after several desorption steps. The biphasic desorption behavior of Zn was characterized by a biphasic desorption model that includes a linear term to represent labile or easily-desorbing fraction and a Langmuirian-type term to represent desorption-resistant fraction. The biphasic desorption model indicated that the size of the maximum capacity of desorption-resistant fraction ($q^{irr}_{max}$) increased with aging in NS. Desorption kinetics and desorption-resistance of Zn in the soils collected from mine tailings (MA, MB and MC collected from surface, subsurface soils and mine waste, respectively) were investigated and compared to the bioavailability to earthworm (Eisenia fetida). Desorption kinetic data of Zn were fitted to several desorption kinetic models. The ratio ($q_{e,d}/q_0$) of remaining Zn at desorption equilibrium ($q_{e,d}$) to initial sorbed concentration ($q_0$) was in the range of 0.53~0.90 in the mine tailings which was higher than that in NS, except MA. The sequential desorption from the mine tailings with 0.01M Na$NO_3$ and 0.01M $CaCl_2$ showed that appreciable amounts of Zn are resistant to desorption due to aging or sequestration. The SM&T (Standard Measurements and Testing Programme of European Union) analysis showed that the sum of oxidizable (Step III) and residual (Step IV) fractions of Zn was linearly related with its desorption-resistance ($q^{irr}_{max}$) determined by the sequential desorption with 0.01M Na$NO_3$ ($R^2$= 0.9998) and 0.01M $CaCl_2$ ($R^2$= 0.8580). The earthworm uptake of Zn and the desorbed amount of Zn ($q_{desorbed}$ = $q_0-q_{e,d}$) in MB soil were also linearly related ($R^2$ = 0.899). Our results implicate that the ecological risk assessment of heavy metals would be possible considering the relation between desorption behaviors and bioavailability to earthworm.

AERODYNAMIC EFFECT OF ROOF-FAIRING SYSTEM ON A HEAVY-DUTY TRUCK

  • KIM C. H.;YOUN C. B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.221-227
    • /
    • 2005
  • Aim of this study is to investigate an aerodynamic effect of a drag-reducing device on a heavy-duty truck. The vehicle experiences two different kinds of aerodynamic forces such as drag and uplifting force (or downward force) as it is traveling straight forward at constant speed. The drag force on a vehicle may cause an increase of the rate of fuel consumption and driving instability. The rolling resistance of the vehicle may be increased as result of the negative uplifting or downward force on the vehicle. A device named roof-fairing system has been applied to examine the reduction of aerodynamic drag force on a heavy-duty truck. As for a engineering design information, the drag-reducing system should be studied theoretically and experimentally for the best efficiency of the device. Four different types of roof-fairing model were considered in this study to investigate the aerodynamic effect on a model truck. The drag and downward force generated by vehicle has been obtained from numerical calculation conducted in this study. The forces produced on four fairing models considered in this study has been compared each other to evaluate the best fairing model in terms of aerodynamic performance. The result shows that the roof-fairing mounted truck has bigger negative uplifting or downward force than that of non-mounted truck in all speed ranges, and drag force on roof-fairing mounted truck has smaller than that of non-mounted truck. The drag coefficient $(C_D)$ of the roof-fairing mounted truck (Model-3) is reduced up to $41.3\%$ than that of non-mounted trucks (Model-1). A downward force generated by a roof-fairing mounted on a truck is linearly proportional to the rolling resistance force. Therefore, the negative lifting force on a heavy-duty truck is another important factor in aerodynamic design parameter and should be considered in the design of a drag-reducing device of a tractor-trailer. According to the numerical result obtained from present study, the drag force produced by the model-3 has the smallest of all in all speed ranges and has reasonable downward force. The smaller drag force on model-3 with 2/3h in height may results of smallest thickness of boundary layer generated on the topside of the container and the lowest intensity of turbulent kinetic energy occurs at the rear side of the container.

Preparation and Properties of EPDM/Thermoplastic Polyurethane Scrap Blends (EPDM/열가소성 폴리우레탄 스크랩 블렌드의 제조 및 물성)

  • Lee, Young-Hee;Kang, Bo-Kyung;Yoo, Hye-Jin;Kim, Jung-Soo;Jung, Young-Jin;Lee, Dong-Jin;Kim, Han-Do
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.172-179
    • /
    • 2009
  • The thermoplastic polyurethane waste (TPU-S) with good tensile properties, hardness, NBS abrasion resistance, specific gravity and low wet coefficient of kinetic friction was melt-blended with ethylene propylene diene monomer rubber (EPDM) with high wet slip resistance and low mechanical properties to form EPDM/TPU-S blend films, and their composition-property relationship was investigated to find the optimum composition for shoe outsole material. The properties except the wet slip resistance increased with increasing TPU-S contents in the blend. All the properties except elongation at break, specific gravity and the wet coefficient of kinetic friction in the range of $0{\sim}65\;wt%$ of TPU-S did not attain the values predicted by the simple additive rule. The optimum weight ratio of EPDM/TPU-S for the application to the typical shoe outsole material was found to be 30/70.

Frictional resistance of different ceramic brackets and their relationship to the second order angulation between bracket slot and wire (세라믹 브라켓의 종류 및 브라켓 슬롯과 와이어 각도에 따른 마찰 저항 차이)

  • Choi, Yoon-Jeong;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.36 no.3 s.116
    • /
    • pp.207-217
    • /
    • 2006
  • Although ceramic brackets have been used widely for improved esthetics during treatment, ceramic brackets have some inherent problems; brittleness, attrition of the opposing teeth and high frictional resistance. This study was performed to understand the frictional resistance of the ceramic brackets, as well as to be a helpful reference for finding the solutions to the problem of frictional resistance. Three different kinds of brackets were used; metal bracket, polycrystalline ceramic brackets with a metal slot to reduce the high frictional resistance and monocrystalline ceramic brackets. The brackets were tested with a $.019{\times}.025$ stainless steel wire with a second order angulation of $0^{\circ}\;and\;10^{\circ}$, and the static and kinetic frictional forces were measured on the universal testing machine. The results of this study showed that the ceramic brackets, especially the monocrystalline ceramic bracket without a metal slot, generated higher frictional resistance than the metal bracket, and the frictional resistance was increased as the angulation between the bracket slot and the wire increased. Therefore, the development of the ceramic bracket with reduced frictional resistance and the prevention of excessive crown tipping during orthodontic treatment will lead to the simultaneous attainment of more efficient and improved esthetic treatment goals.

Simulation of Cardiovascular System for an Optimal Sodium Profiling in Hemodialysis

  • Lim, K.M.;Min, B.G.;Shim, E.B.
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.2
    • /
    • pp.16-26
    • /
    • 2004
  • The object of this study is to develop a mathematical model of the hemodialysis system including the mechanism of solute kinetics, water exchange and also cardiovascular dynamics. The cardiovascular system model used in this study simulates the short-term transient and steady-state hemodynamic responses such as hypotension and disequilibrium syndrome (which are main complications to hemodialysis patients) during hemodialysis. It consists of a 12 lumped-parameter representation of the cardiovascular circulation connected to set-point models of the arterial baroreflexes, a kinetic model (hemodialysis system model) with 3 compartmental body fluids and 2 compartmental solutes. We formulate mathematically this model in terms of an electric analog model. All resistors and most capacitors are assumed to be linear. The control mechanisms are mediated by the information detected from arterial pressoreceptors, and they work on systemic arterial resistance, heart rate, and systemic venous unstressed volume. The hemodialysis model includes the dynamics of urea, creatinine, sodium and potassium in the intracellular and extracellular pools as well as fluid balance equations for the intracellular, interstitial, and plasma volumes. Model parameters are largely based on literature values. We have presented the results on the simulations performed by changing some model parameters with respect to their basal values. In each case, the percentage changes of each compartmental pressure, heart rate (HR), total systemic resistance (TSR), ventricular compliance, zero pressure filling volume and solute concentration profiles are represented during hemodialysis.

  • PDF

CFD CODE DEVELOPMENT FOR THE PREDICTION OF THE SHIP RESISTANCE USING OPEN SOURCE LIBRARIES (소스공개 라이브러리를 활용한 선박 저항계산 CFD 코드 개발)

  • Park, Sun-Ho;Park, Se-Wan;Rhee, Shin-Hyung;Lee, Sang-Bong;Choi, Jung-Eun;Kang, Seon-Hyung
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 2012
  • Reynolds-averaged Navier-Stokes equations solver based on a pressure-based cell-centered finite volume method was developed using OpenFOAM libraries, which was an open source and providing computational continuum mechanics libraries. For the reasonable development of the turbulent boundary layer on the bow of the ship, specified library was developed. Grid sensitivities, such as skewness and aspect ratio of a cell, were tested for the solution convergence. Pressure, turbulent kinetic energy, turbulent dissipation rate contours on the ship surface computed by the developed CFD code were compared with those computed by the commercial CFD code, Fluent.