• 제목/요약/키워드: kinetic energies

검색결과 220건 처리시간 0.357초

Molecular Simulation Studies of Scattered and Penetrated Hydrogen Ions III. Kinetic Energies in Ni (100) layers (산란 및 투과된 수소 이온의 분자 전산 연구 III. 니켈 (100) 표면 층의 운동에너지)

  • Suh, Soong-Hyuck;Min, Woong-Ki
    • Journal of Hydrogen and New Energy
    • /
    • 제12권3호
    • /
    • pp.191-199
    • /
    • 2001
  • In this paper molecular dynamics simulations have been carried out to investigate energy and momentum transfer of hydrogen ions impacted on the Ni (100) surface with $45^{\circ}$ and $90^{\circ}$ incident angles. The initial kinetic energies of the hydrogen ion were ranged from 100 eV to 1,600 eV to study the layer-by-layer energy variation as a dependence of incident energies and angles. At low incident energies, the scattering energy transfer is dominated by the normal motion of surface layers due to thermal vibrations and multiple collision effects. For higher incident energies, the scattering energy transfer in a normal direction is greater than that in a parallel direction. In the case of penetration, the amount of transferred energies do not affect much on Ni layers at low incident energy. It was found channeling effects through Ni layers with increasing incident energies.

  • PDF

Numerical procedure for the vibration analysis of arbitrarily constrained stiffened panels with openings

  • Cho, Dae Seung;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.763-774
    • /
    • 2014
  • A simple and efficient vibration analysis procedure for stiffened panels with openings and arbitrary boundary conditions based on the assumed mode method is presented. Natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion, where Mindlin theory is applied for plate and Timoshenko beam theory for stiffeners. The effect of stiffeners on vibration response is taken into account by adding their strain and kinetic energies to the corresponding plate energies whereas the strain and kinetic energies of openings are subtracted from the plate energies. Different stiffened panels with various opening shapes and dispositions for several combinations of boundary conditions are analyzed and the results show good agreement with those obtained by the finite element analysis. Hence, the proposed procedure is especially appropriate for use in the preliminary design stage of stiffened panels with openings.

Basis Set Requirement for Small Components Besides Kinetic Balance in Relativistic Self-Consistent-Field Calculations of Many Electron Systems

  • Lee, Yoon-Sup;Baeck, Kyoung-Koo
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권6호
    • /
    • pp.428-433
    • /
    • 1986
  • It is demonstrated by using a highly positive uranium ion as a test case that the exact relation between the small and the large components of a Dirac spinor in relativistic self-consistent-field (RSCF) calculations is not fully satisfied by the kinetic balance condition only even for two electron systems. For a fixed number of large component basis functions, total energies are sensitive to the change of the size of the small component basis sets even after the kinetic balance condition is fully satisfied. However, the kinetic balance condition appears to be a reasonable guideline in generating reliable and practical basis sets for most applications of RSCF calculations. With a complete small component basis set, energies from RSCF calculations exhibit a variational behavior, implying the stability of the present RSCF procedure.

Molecular Simulation Studies of Scattered and Penetrated Hydrogen Ions I. Normal Incident Angle to Ni (100) Surface (산란 및 투과된 수소 이온의 분자 전산 연구 I. 니켈 (100) 표면의 직각 입사)

  • Suh, Soong-Hyuck;Min, Woong-Ki
    • Journal of Hydrogen and New Energy
    • /
    • 제11권3호
    • /
    • pp.127-136
    • /
    • 2000
  • Molecular dynamics simulations have been carried out to investigate the scattering and penetration properties of hydrogen ions with the normal incident angle to Ni (100) surface. The initial kinetic energies of hydrogen ions range from 100 to 1,600 eV. The simulation results are used to assess the applicabilities of theoretical predictions based on the binary collision approximation, and, in the high kinetic regime, theoretical results for scattering energies were shown to he a good agreement with molecular simulations. The angle dependencies on both scattering and penetration distributions were found in the longitudinal direction, but not in the azimuthal direction except for the high kinetic energy of 1,600 eV.

  • PDF

Experimental Study on the Centerline Flow Characteristics of Jets (분사류의 중심선 유동특성에 관한 실험적 연구)

  • Kim, Dong-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제4권4호
    • /
    • pp.387-393
    • /
    • 2001
  • The flow characteristics on the centerline in case of free jet, sudden expansion jet and impinging jet have been investigated. Centerline flow behaviors and similaritis with mean velocities, turbulent intensities, shear stresses, isotropic structures and turbulent kinetic energies on the streamwise direction were looked into and compared with three jets, The results show that mean velocities have represented potential core and decayed with similar gradients. The turbulent intensities and shear stresses were presented peak values in the self-preserving region, and then they were in decay. Aeolotropy in the initial region were possible returned to isotropy patterns with asymptotic approach in the downstream region. It has been found that the turbulent kinetic energies for the three cases of jet existed in the similarity and they coincided with Gaussian profile.

  • PDF

Scattering of Noble Gas Ions from a Si(100) Surface at Hyperthermal Energies (20-300 eV)

  • 이현우;Kang, H.
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권2호
    • /
    • pp.101-104
    • /
    • 1995
  • In an attempt to understand the nature of hyperthermal ion-surface collisions, noble gas ion beams (He+, Ne+, Ar+, and Xe+) are scattered from a Si(100) surface for collision energies of 20-300 eV and for 45°incidence angle. The scattered ions are mass-analyzed using a quadrupole mass spectrometer and their kinetic energy is measured in a time-of-flight mode. The scattering event for He+ and Ne+ can be approximated as a sequence of quasi-binary collisions with individual Si atoms for high collision energies (Ei > 100 eV), but it becomes of a many-body nature for lower energies, Ar+ and Xe+ ions undergo mutliple large impact parameter collisions with the surface atoms. The effective mass of a surface that these heavy ions experience during the collision increases drastically for low beam energies.

Determination of Kinetic Parameters for Texture Changes of Sweet Potatoes during Heating (고구마 조직의 가열변화에 대한 반응속도론적 상수 결정)

  • Lee, Jung-Ju;Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • 제33권1호
    • /
    • pp.66-71
    • /
    • 2001
  • Kinetic parameters for the texture degradation of three varieties of sweet potato during heating were determined using two alternative methods, the biphasic model and the fractional conversion method. The texture degradation of sweet potatoes during heating could be expressed by two simultaneous first order reactions using the biphasic method, whose activation energies were ranged $71.0{\sim}75.1\;kJ/mol\;and\;48.4{\sim}59.6\;kJ/mol$ for the initial fast texture degradation reaction and the slow texture degradation reaction at a prolonged heating period, respectively. However, the whole texture degradation phenomena of sweet potatoes during heating could also be explained by a single first order reaction using the fractional conversion method. The activation energies were $67.5{\sim}75.3\;kJ/mol$, which were comparable with those of the first phase reaction for the texture degradation determined by the biphasic model. A kinetic compensation effect shown between the kinetic parameters determined by both methods indicates that both methods can be conveniently used to determine kinetic parameters for the texture degradation of sweet potatoes by heating.

  • PDF

Expansion of the equilibrium constants for the temperature range of 300K to 20,000K

  • Kim, Jae Gang
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권4호
    • /
    • pp.455-466
    • /
    • 2016
  • Chemical-kinetic parameters of the equilibrium constants to evaluate the reverse rate coefficients in the shock layer of a blunt body and the expanding flows are derived for the temperature range from 300 K to 20,000 K. The expanded equilibrium constants for the chemical reactions of the dissociation, ionization, associative ionization, and neutral and charge exchange reactions of the atmospheric species and carbon materials are proposed in the present work. In evaluating the equilibrium constants, the inter-nuclear potential energies of the molecular species are calculated by the analytical potential function of the Hulburt-Hirschfelder model, and the parameters of the analytical model are determined from the semi-classically calculated RKR potentials. The electronic states and energies of the atoms are calculated by the electronic energy grouping model, and the rovibrational states and energies of each electronic states of the molecules are evaluated by the WKB method. The expanded equilibrium constants for 31 types of the reactions are provided for the best curve-fit functions, and the recombination reaction rate coefficients evaluated from the present equilibrium constants are compared with existing measured values.

Oxidative Degradation Kinetics of Tocopherols during Heating

  • Chung, Hae-Young
    • Preventive Nutrition and Food Science
    • /
    • 제12권2호
    • /
    • pp.115-118
    • /
    • 2007
  • Tocopherols are important lipid-phase antioxidants that are subject to heat degradation. Therefore, kinetic analyses for oxidative degradation of tocopherols as a function of temperatures and times were performed. Alpha-, gamma- and delta-tocopherols dissolved in glycerol were heated at 100${\sim}$250$^{\circ}C$ for 5~60 min. Oxidized tocopherols were analyzed by HPLC using a reversed phase ${\mu}$-Bondapak C$_{18}$-column with two kinds of elution solvent systems in a gradient mode. The degradation kinetics for tocopherols followed a first-order kinetic model. The rate of tocopherol degradation was dependent on heating temperatures. The degradation rate constants for ${\gamma}$- and ${\delta}$-tocopherols were higher than those for ${\alpha}$-tocopherol. The experimental activation energies of ${\alpha}$-, ${\gamma}$- and ${\delta}$- tocopherols were 2.51, 6.05 and 5.34 kcal/mole, respectively. The experimental activation energies for the oxidative degradation of ${\gamma}$- and ${\delta}$-tocopherols were higher than that of ${\alpha}$-tocopherol.

Kinetic Modeling for Quality Prediction During Kimchi Fermentation

  • Chung, Hae-Kyung;Yeo, Kyung-Mok;Kim, Nyung-Hwan
    • Preventive Nutrition and Food Science
    • /
    • 제1권1호
    • /
    • pp.41-45
    • /
    • 1996
  • This study was conducted to develop the fermentation kinetic model for the prediction of acidity and pH changes in Kimchi as a function of fermentation temperatures. The fitness of the model was evaluated using traditional two-step method and an alternative non-linear regression method. The changes in acidity and pH during fermentation followed the pattern of the first order reaction of a two-step method. As the fermentation temperature increased from 4$^{\circ}C$ to 28, the reaction rates of acidity and pH were increased 8.4 and 7.6 times, respectively. The activation energies of acidity and pH were 16.125 and 16.003kcal/mole. The average activation energies of acidity and pH using a non-linear method were 16.006 by the first order and 15.813 kcal/mole by the zero order, respectively. The non-linear procedure had better fitting 개 experimental data of the acidity and pH than two-step method. The shelf-lives based on the time to reach the 1.0% of acidity were 33.1day at 4$^{\circ}C$ and 2.8 day 28$^{\circ}C$.

  • PDF