• Title/Summary/Keyword: kinematic wave

Search Result 151, Processing Time 0.024 seconds

A Study for Fixed Type Wave Energy Conversion Device with Oscillating Water Column (고정식 진동수주형 파력발전기에 관한 실험적 연구)

  • 김성근;박노식;박인규
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.136-145
    • /
    • 1996
  • The theory is based on two thermodynamic equations for the air mass in the air column and bydrodynamic equation for the relation between the response of the air in the water column and the incident wave. The numerical model is experimented in a two dimensional water tank and the caisson model with sloped front wall is tested in the large towing tank.

  • PDF

Research on Wave Kinematics & Wave Loads in Breaking Wave (쇄파의 유동구조 및 쇄파력에 대한 연구)

  • LEE BYEONG-SEONG;JO HYO-JAE;GOO JA-SAM;KANG BYUNG-YOON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.96-101
    • /
    • 2004
  • When the wind blows hard, most waves are breaking in sea. Breaking waves occur, exceeding limitation of wave steepness(wave height/wave length=l/7). Because a wave of single angular frequency couldn't generate the breaking phenomena at two dimensional ocean engineering basin, the breaking wave can be generated by the superposition of waves with various angular frequencies. We research how are the particle kinematics in the breaking wave and the magnitude of the breaking wave exciting force. We compare the force in a regular wave which has same specifications(wave height, period and length) as the breaking wave. Also the experimental results of wave exciting force and particle velocity are investigated by comparison on the analytic results using the potential theory.

  • PDF

Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.645-656
    • /
    • 2018
  • Importance of procuring adequate knowledge about the mechanical behavior of double-layered graphene sheets (DLGSs) incensed the authors to investigate wave propagation responses of mentioned element while rested on a visco-Pasternak medium under hygro-thermal loading. A nonlocal strain gradient theory (NSGT) is exploited to present a more reliable size-dependent mechanical analysis by capturing both softening and hardening effects of small scale. Furthermore, in the framework of a classical plate theory the kinematic relations are developed. Incorporating kinematic relations with the definition of Hamilton's principle, the Euler-Lagrange equations of each of the layers are derived separately. Afterwards, combining Euler-Lagrange equations with those of the NSGT the nonlocal governing equations are written in terms of displacement fields. Interaction of the each of the graphene sheets with another one is regarded by the means of vdW model. Then, a widespread analytical solution is employed to solve the derived equations and obtain wave frequency values. Subsequently, influence of each participant variable containing nonlocal parameter, length scale parameter, foundation parameters, temperature gradient and moisture concentration is studied by plotting various figures.

Dynamic Analysis of Wave Energy Generation System by Using Multibody Dynamics (다물체 동역학을 이용한 파력발전기의 동적거동 분석)

  • Jang, Jin-Seok;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1579-1584
    • /
    • 2011
  • This paper discusses an energy system that can convert wave energy into electrical energy. This wave energy generation system is movable and has 12 arms and one generator. A multibody dynamic model for this system is established by using kinematic constraints. A gear mechanism, several kinematic constraints, and force elements are included in the model. Wave forces are obtained numerically from the time domain formulation based on the Morison equation. The MSC/ADAMS program is employed to carry out dynamic analysis of the wave energy generation system. The dynamic behavior responses of this system are analyzed for design verification. According to the results of the dynamic analysis, the yaw motion is relatively stable and kinetic energy sufficient to generate electrical energy is obtained when the wave height exceeds 1m.

Runoff Analysis Using a Distributed Rainfall-Runoff Model (분포형 강우-유출 모형에 의한 유출 해석)

  • 신사철
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.131-139
    • /
    • 1996
  • The main goal of this study is a rainfall-runoff analysis using atopographically-based distributed model. It consists of two parts: one is a direct runoff submodel and the other is a baseflow submodel. The direct runoff submodel is a distributed model which routed through the drainage networks with a kinematic wave model. The baseflow submodel is considered as a lumped system. This model makes it possible to take the effect of areal and temporal distribution of storm into accout.

  • PDF

Kinematic Wave Rainfall-Runoff Model Using CUDA FORTRAN (CUDA FORTRAN을 이용한 운동파 강우유출모형)

  • Kim, Boram;Kim, Dae-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.271-271
    • /
    • 2018
  • 그래픽 처리 장치(GPU: Graphic Processing Units)는 그래픽 처리에 특화된 수많은 산술논리연산자 (ALU: Arithmetic Logic Unit)와 이에 관련된 인스트럭션Instruction)으로 인해 중앙 처리 장치(CPU: Central Processing Units) 보다 훨씬 빠른 계산 처리를 수행할 수 있다. 최근에는 FORTRAN에 의해 구현된 많은 수치모형들이 현실적인 모델링 방법의 발달로 인해 더 많은 계산량과 계산시간을 필요로 한다. 이 연구에서는 GPU 상의 범용 계산GPGPU : General-Purpose computing on Graphics Processing Units) 기반 운동파 강우유출모형(Kinematic Wave Rainfall-Runoff Model)이 CUDA(Compute Unified Device Architecture) FORTRAN을 사용하여 구현되었다. CUDA FORTRAN 운동파 강우유출모형의 계산 결과는 검증된 CPU 기반 운동파 강우유출모형의 계산 결과와 비교하여 검증되었으며, 잘 일치함을 보여 주었다. CUDA FORTRAN 운동파 강우유출모형은 CPU 기반 모형에 비해 약 20 배 더 빠른 계산 시간을 보였다. 또한 계산 영역이 커짐에 따라 CPU 버전에 비해 CUDA FORTRAN 버전의 계산 효율이 향상되었다.

  • PDF

Numerical Simulation of a Near shore Tsunami Using a Digital Wave Tank Simulation Technique (디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션)

  • 박종천;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.7-15
    • /
    • 2003
  • A Digital Wave Tank simulation technique, based on a finite-difference method and a modified marker-and-cell (MAC) algorithm, is applied in order to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach, Ohkushiri Island, and to predict maximum wove run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain, and the boundary values are updated at each time step, by a finite-difference time-marching scheme in the frame of the rectangular coordinate system. The fully nonlinear, kinematic, free-surface condition is satisfied by the modified marker-density function technique. The near shore Tsunami is assumed to be a solitary wave, and is generated from the numerical wave-maker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods, based on the shallow-water wave theory.

NUMERICAL SIMULATIONS OF FULLY NONLINEAR WAVE MOTIONS IN A DIGITAL WAVE TANK (디지털 파랑 수조 내에서의 비선형 파랑 운동의 수치시뮬레이션)

  • Park, J.C.;Kim, K.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.90-100
    • /
    • 2006
  • A digital wave tank (DWT) simulation technique has been developed by authors to investigate the interactions of fully nonlinear waves with 3D marine structures. A finite-difference/volume method and a modified marker-and-cell (MAC) algorithm have been used, which are based on the Navier-Stokes (NS) and continuity equations. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique or the Level-Set (LS) technique developed for one or two fluid layers. In this paper, some applications for various engineering problems with free-surface are introduced and discussed. It includes numerical simulation of marine environments by simulation equipments, fully nonlinear wave motions around offshore structures, nonlinear ship waves, ship motions in waves and marine flow simulation with free-surface. From the presented simulations, it seems that the developed DWT simulation technique can handle various engineering problems with free-surface and reliably predict hydrodynamic features due to the fully-nonlinear wave motions interacting with such marine structures.

Numerical Simulation of Nearshore Tsunami Using a Digital Wave Tank Simulation Technique (디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션)

  • Park, Jong-Chun;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.231-239
    • /
    • 2003
  • A Digital Wave Tank simulation technique based on a finite-difference method and a modified marker-and-cell (MAC) algorithm is applied to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach and Ohkushiri island, and to predict maximum wave run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain and the boundary values updated at each time step by a finite-difference time-marching scheme in the frame of rectangular coordinate system. The fully nonlinear kinematic free-surface condition is satisfied by the modified marker-density function technique. The Nearshore Tsunami is assumed to be a solitary wave and generated from the numerical wavemaker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods based on the shallow-water wave theory.

  • PDF