• Title/Summary/Keyword: kinematic wave

Search Result 152, Processing Time 0.028 seconds

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF

A Modified grid-based KIneMatic wave STOrm Runoff Model (ModKIMSTORM) (I) - Theory and Model - (격자기반 운동파 강우유출모형 KIMSTORM의 개선(I) - 이론 및 모형 -)

  • Jung, In Kyun;Lee, Mi Seon;Park, Jong Yoon;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.697-707
    • /
    • 2008
  • The grid-based KIneMatic wave STOrm Runoff Model (KIMSTORM) by Kim (1998) predicts the temporal variation and spatial distribution of overland flow, subsurface flow and stream flow in a watershed. The model programmed with C++ language on Unix operating system adopts single flowpath algorithm for water balance simulation of flow at each grid element. In this study, we attempted to improve the model by converting the code into FORTRAN 90 on MS Windows operating system and named as ModKIMSTORM. The improved functions are the addition of GAML (Green-Ampt & Mein-Larson) infiltration model, control of paddy runoff rate by flow depth and Manning's roughness coefficient, addition of baseflow layer, treatment of both spatial and point rainfall data, development of the pre- and post-processor, and development of automatic model evaluation function using five evaluation criteria (Pearson's coefficient of determination, Nash and Sutcliffe model efficiency, the deviation of runoff volume, relative error of the peak runoff rate, and absolute error of the time to peak runoff). The modified model adopts Shell Sort algorithm to enhance the computational performance. Input data formats are accepted as raster and MS Excel, and model outputs viz. soil moisture, discharge, flow depth and velocity are generated as BSQ, ASCII grid, binary grid and raster formats.

Multi-phase Flow Velocity Measurement Technique using Shadow Graphic Images (다위상 유체 속도 계측을 위한 영상기법 적용)

  • Ryu, Yong-Uk;Jung, Kwang-Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.61-65
    • /
    • 2012
  • Air-water flow measurements are of importance for the coastal and ocean engineering fields. Although kinematic investigations of the multi-phase flows have been conducted for long time, velocity measurements still are concerned with many researchers and engineers in coastal and ocean areas. In the present study, an imaging technique using shadowgraphy and fiber optic probe for velocity measurements of air bubbles is introduced. The shadow graphy image technique is modified from the typical image velocimetry methods, and optical fibers are used for the well-known intrusive coupled phase-detection probe system. Since the imaging technique is a non-intrusive optical method from the air, it is usually applied for 2D flows. On the other hand, the double fiber optic probes touch flows regardless of flow patterns. The results of the flow measurements by both methods are compared and discussed. The methods are also applied to the measurements of overtopping flows by a breaking wave over the structure fixed on the free surface.

Flow Near a Rotating Disk with Surface Roughness (표면조도를 갖는 회전판 주위의 유동)

  • Park, Jun-Sang;Yoon, Myung-Sup;Hyun, Jae-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.634-639
    • /
    • 2003
  • It has been studied the flow near a rotating disk with surface topography. The system Ekman number is assumed very small, i.e., $E[{\equiv}\frac{\nu}{{\Omega}^{\ast}L^{\ast2}}]<<1$ in which $L^{\ast}$ denotes a disk radius, ${\nu}$ kinematic viscosity of the fluid and ${\Omega}^{\ast}$ angular velocity of the basic state. Disk surface has a sinusoidal topographic variation along radial coordinate, i.e., $z={\delta}cos(2{\pi}{\omega}r)$, where ${\delta}$ and ${\omega}$ are, respectively, nondimensional amplitude and wave number of the disk surface. Analytic solutions, being useful over the parametric ranges of ${\delta}{\sim}O$( $E^{1/2}$ ) and ${\omega}{\leq}O$ ( $E^{1/2}$ ), are secured in a series-function form of Fourier-Bessel type. An asymptotic behavior, when $E{\rightarrow}0$, is clarified as : for a disk with surface roughness, in contrast to the case of a flat disk, the azimuthal velocity increases in magnitude, together with the thickening boundary layer. The radial velocity, however, decreases in magnitude as the amplitude of surface waviness increases. Consequently, the overall Ekman pumping at the edge of the boundary layer remains unchanged, maintaining the constant value equal to that of the flat disk.

  • PDF

Physical based Development of 2-Dimensional Distributed Rainfall-Runoff model (물리적 기반의 2차원 분포형 강우-유출모형의 개발)

  • Kang, Boo-Sik;Moon, Soo-Jin;Kim, Jin-Gyeom
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.257-257
    • /
    • 2011
  • 현업에서 사용하는 유출해석 기본이론은 연속방정식과 운동방정식으로서 운동파가정(kinematic wave analogy)을 기반으로 한 집중수문모형(lumped hydrologic model)에 의하여 수행되고 있지만 집중형 모형은 한 매개변수에 여러 가지의 물리적 과정을 개념화하여 담고 있기 때문에 유출과정에 대한 섬세한 모형화의 제약으로 인하여 유역고유의 매개변수값을 찾기가 쉽지 않은 단점을 가지고 있다. 이에 본 연구에서는 물리적 기반의 2차원 분포형 강우-유출모형을 개발하고자 하며 이는 완전분포형 수문동역학적 모형으로 지표흐름과 침투과정, 기저유출과 관련된 과정을 모의한다. 본 모형은 공간적으로 변화하는 침투량과 소규모 및 대규모의 지형학적 특성을 사용하는 St. Venant 방정식을 사용하고 개발될 모형은 모든 스케일에서의 수심과 유량을 계산할 수 있으며 Richard 방정식(또는 선택적으로 Green-Ampt 방정식 채택)을 이용하여 정밀한 침투량 모의가 가능하다. 또한 레이다등의 고해상도 강우관측자료를 지점자료와 합성하여 입력자료로 사용할 수 있도록하고자 하며 강우-유출모형에 다목적댐이나 보등에서의 유량조절효과를 반영하고, 다목적댐군에서의 연계운영모의가 가능케 함으로서 현업의 운영자들이 실무에서 실질적으로 활용할 수 있는 형태의 모형을 개발하고자 한다. 이는 국내에서의 2차원 분포형 강우-유출모형을 자체 개발함으로서 연구역량을 제고하고, 국내 현업기관에서의 분포형 모형기반의 홍수모니터링 및 전망시스템의 확산에 기여할 것으로 예상된다.

  • PDF

Volume Integral Expressions for Numerical Computation of the Dynamic Energy Release Rate (동적(動的)에너지 방출율(放出率)의 수치해석(數値解析)을 위한 체적적분식(體積積分式))

  • Koh, Hyun Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.65-73
    • /
    • 1989
  • Continuum formulations for the expressions of dynamic energy release rates and computational methods for dynamic stress intensity factors are developed for the analysis of dynamic fracture problems subjected to stress wave loading. Explicit volume integral expressions for instantaneous dynamic energy release rates are derived by modeling virtual crack extensions with the dynamic Eulerian-Lagrangian kinematic description. In the finite element applications a finite region around a crack-tip is modeled by using quarter-point singular isoparametric elements, and the volume integrals are evaluated for each crack-tip element during virtual crack extensions while the singularity is maintained. It is shown that the use of the present method is more reliable and accurate for the dynamic fracture analysis than that of other path-independent integral methods when the effects of stress waves are significant.

  • PDF

Investigating Ephemeral Gully Erosion Heads Due To Overland Flow Concentration in Nonpoint Source Pollution Control (비점오염원 관리에서 지표수 집중화로 인한 구강 침식점 조사 방법 연구)

  • Kim, Ik-Jae;Son, Kyong-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.454-458
    • /
    • 2007
  • Nonpoint source (NPS) pollution is a serious problem causing the degradation of soil and water quality. Concentrated overland flow is the primary transport mechanism for a large amount of NPS pollutants from hillslope areas to downslope areas in a watershed. In this study, a soil erosion model, nLS model, to identify transitional overland flow regions (i.e., ephemeral gully head areas) was developed using the kinematic wave overland flow theory. Spatial data, including digital elevation models (DEMs), soil, and landcover, were used in the GIS-based model algorithm. The model was calibrated and validated using gully head locations in a large agricultural watershed, which were identified using 1-m aerial photography. The model performance was better than two previous approaches; the overall accuracy of the nLS model was 72 % to 87 % in one calibration subwatershed and the mean overall accuracy was 75 to 89 % in four validation subwatersheds, showing that the model well predicted potential transitional erosion areas at different watersheds. However, the user accuracy in calibration and validation was still low. To improve the user accuracy and study the effects of DEM resolution, finer resolution DEMs may be preferred because DEM grid is strongly sensitive to estimating model parameters. Information gained from this study can improve assessing soil erosion process due to concentrated overland flow as well as analyze the effect of microtopographic landscapes, such as riparian buffer areas, in NPS control.

  • PDF

An Extended Model Evaluation Method under Uncertainty in Hydrologic Modeling

  • Lee, Giha;Youn, Sangkuk;Kim, Yeonsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.13-25
    • /
    • 2015
  • This paper proposes an extended model evaluation method that considers not only the model performance but also the model structure and parameter uncertainties in hydrologic modeling. A simple reservoir model (SFM) and distributed kinematic wave models (KWMSS1 and KWMSS2 using topography from 250-m, 500-m, and 1-km digital elevation models) were developed and assessed by three evaluative criteria for model performance, model structural stability, and parameter identifiability. All the models provided acceptable performance in terms of a global response, but the simpler SFM and KWMSS1 could not accurately represent the local behaviors of hydrographs. Moreover, SFM and KWMSS1 were structurally unstable; their performance was sensitive to the applied objective functions. On the other hand, the most sophisticated model, KWMSS2, performed well, satisfying both global and local behaviors. KMSS2 also showed good structural stability, reproducing hydrographs regardless of the applied objective functions; however, superior parameter identifiability was not guaranteed. A number of parameter sets could result in indistinguishable hydrographs. This result indicates that while making hydrologic models complex increases its performance accuracy and reduces its structural uncertainty, the model is likely to suffer from parameter uncertainty.

Store-Release based Distributed Hydrologic Model with GIS (GIS를 이용한 기저-유출 바탕의 수문모델)

  • Kang, Kwang-Min;Yoon, Se-Eui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.35-35
    • /
    • 2012
  • Most grid-based distributed hydrologic models are complex in terms of data requirements, parameter estimation and computational demand. To address these issues, a simple grid-based hydrologic model is developed in a geographic information system (GIS) environment using storage-release concept. The model is named GIS Storage Release Model (GIS-StoRM). The storage-release concept uses the travel time within each cell to compute howmuch water is stored or released to the watershed outlet at each time step. The travel time within each cell is computed by combining the kinematic wave equation with Manning's equation. The input to GIS-StoRM includes geospatial datasets such as radar rainfall data (NEXRAD), land use and digital elevation model (DEM). The structural framework for GIS-StoRM is developed by exploiting geographic features in GIS as hydrologic modeling objects, which store and process geospatial and temporal information for hydrologic modeling. Hydrologic modeling objects developed in this study handle time series, raster and vector data within GIS to: (i) exchange input-output between modeling objects, (ii) extract parameters from GIS data; and (iii) simulate hydrologic processes. Conceptual and structural framework of GIS StoRM including its application to Pleasant Creek watershed in Indiana will be presented.

  • PDF

Improvement of surface runoff lag algorithm in SWAT (SWAT 모형의 지표유출지체 알고리즘 개선)

  • Kim, Nam Won;Lee, Jeongwoo;Lee, Jung Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.299-299
    • /
    • 2016
  • 미농무성에서 개발된 유역수문모형 SWAT을 국내유역에 적용할 경우 일반적으로 일단위 유출 수문곡선의 첨두부가 관측치에 비해 과소하게 모의되는 경향이 있다. 본 연구에서는 이러한 원인에 대해서 고찰하고, 첨두부가 작게 모의되는 문제를 해결하기 위해서 지표유출의 지체와 관련된 서브루틴을 개선하였다. SWAT 모형에서는 지표유출의 지체는 운동파 집중시간(kinematic wave time of concentration)을 변수로 하는 지수형 감쇠함수를 사용하고 있다. 그러나 집중시간 계산식에서 지표유출에 기여하는 초과우량을 6.35mm/hr로 작은 고정값으로 가정하고 있어 큰 호우가 발생한 경우에도 집중시간이 길게 계산되는 구조를 가지고 있다. 이로 인해 지표유출의 지체 효과가 커서 첨두유량이 과소하게 산정되는 문제가 발생한다. 따라서 본 연구에서는 집중시간 계산시 고정값 6.35mm/hr 대신에 일 단위로 모의된 지표유출 발생량이 입력되도록 알고리즘을 수정하였다. 이 방법은 지표유출량의 크기에 따라 집중시간을 가변적으로 산정되게 함으로써 수문곡선의 첨두부를 보다 유연하게 구현할 수 있는 장점이 있다. 모형의 개선 효과를 평가하기 위해서 충주댐 상류유역을 대상으로 개선 전, 후의 일 단위 유출수문곡선의 첨두부를 비교하였으며, 그 결과 큰 홍수가 발생한 기간의 첨두유량이 10 % 이상 증가하는 것으로 분석되었다.

  • PDF