• Title/Summary/Keyword: kinematic variables

Search Result 327, Processing Time 0.022 seconds

A Study on the Kinematic and Dynamic Analyses of Spatial Complex Kinematic Chain (공간 복합기구연쇄의 기구학 및 동역학 해석에 관한 연구)

  • 김창부;김효식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2543-2554
    • /
    • 1993
  • In this paper, the kinematic and dynamic analyses of spatial complex kinematic chain are studied. Through the new method both using the set of identification numbers and applying the DenavitHartenberg link representation method to the spatial complex kinematic chain, the kinematic configuration of the chain is represented. Some link in the part of closed chain being fictitiously cutted, the complex kinematic chain is transformed to the branched chain. The kinematic constraint equations are derived from the constraint conditions which the cutted sections of the link have to satisfy. And the joint variables being partitioned in the independent joint variables and the dependent joint variables, the dependent variables are calculated from the independent variables by using the Newton-Raphson iterative method and the pseudoinverse matrix. The equations of motion are derived under the independent joint variables by using the principle of virtual work. Algorithms for dynamic analysis are presented and simulations are done to verify accuracy and efficiency of the algorithms.

Analysis of Kinematic Variables according to Ground Slope Angle during Golf Putting (골프 퍼팅 시 지면 경사도에 따른 운동학적 변인 분석)

  • Park, Jun-Sung;Shin, Sung-Hoon;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.44-49
    • /
    • 2021
  • Objective: The purpose of this study was to analyze kinematic variables according to ground slope angle during golf putting. Method: 26 collegiate golfers (age: 22.54±2.15 kg, height: 174.64±6.07 cm, weight: 71.35±9.27 kg, handicap: 5.11±4.50) were participated, and 8 motion capture cameras (250 Hz), Nexus, and Kwon3DXP software were used to collect data. It was performed repeated measures ANOVA and Bonferroni adjustment. Alpha set at .05. Results: Body alignments were not significantly different at address. Putter head trajectory and loft angle were significantly different, and AP direction of acceleration of putter head was significantly different. However, ML and SI direction of acceleration of putter head were not significantly different. Conclusion: Therefore, it was identified that ground slope angle was affected the kinematic variables during putting, and it will be performed that correlation analysis between putting success rate and kinematic variables according to ground slope angle during golf putting.

Relationship between Muscle Activity and Kinematic Variables of the Upper Extremity during a Push-up Task on Stable and Unstable Surfaces (안정된 지지면과 불안정한 지지면에서 팔굽혀 펴기 시 상지 근활성도와 운동학적 변수간의 상관분석)

  • Yoon, Jung-Gyu
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.2
    • /
    • pp.7-15
    • /
    • 2011
  • Purpose: We investigated the relationship between the muscle activity and kinematic variables of the upper extremity during a push-up task on stable and unstable surfaces. Methods: We recruited 15 healthy subjects. Subjects completed the push-up task on stable and unstable surfaces. Surface electromyograms were recorded from the serratus anterior, upper trapezius, latissimus dorsi, infraspinatus to monitor changes in muscle activity. Markers for kinematic changes of elbow flexion, shoulder extension, shoulder retraction and scapular adduction were attached at C7, the T7 spinous process, both acromions, the scapula superior and inferior angle, the humerus lateral epicondyle, and the ulnar styloid process. Correlation coefficients between muscle activity and kinematic variables were analyzed by SPSS for Windows, version 15.0. Results: On the unstable surface, elbow flexion and shoulder extension increased with increasing muscle activity of serratus anterior, upper trapezius and infraspinatus. On the stable surface, shoulder retraction decreased with increasing muscle activity of serratus anterior and infraspinatus. Scapular adduction decreased with all types of increasing muscle activity, regardless of the support surface. Conclusion: Correlations between muscle activity and kinematic variables were observed on stable and unstable surfaces during a push-up task, while correlations between right and left variables were not clear. These finding suggest that it may be used to develop a rehabilitation program which could be effective in improving shoulder function in patients with shoulder problems.

Three-dimensional Kinematic Analysis of the Yurchenko Layout with 360-degree Twist in Female Vaults: Deterministic Model and Judges' Scores

  • Park, Cheol-Hee;Kim, Young-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Objective: The purpose of this study was to identify kinematic variables that govern successful performance and judges' scores and to establish correlative relationships among those of Yurchenko layout with a full twist in female vaults. Method: Four video cameras with sampling rate of 60 Hz collected 32 motion data of Yurchenko vaults from twenty-two female participants (age: $18.6{\pm}3.6years$, height: $153.0{\pm}6.5cm$, mass: $44.7{\pm}7.3kg$) during national competition. Posting processing and calculations of kinematic variables were performed in Kwon 3D XP and $Matlab^{(R)}$ programs. Correlation and regression analyses were applied to find the relationships between the obtained scores and kinematic variables. Deterministic model (Hay & Reid, 1988) was used to investigate the strength of correlative relationships among kinematic variables. Results: The obtained scores from the judges' decision were mainly affected by post-flight peak height, horse contact time, knee angle at landing, and horse takeoff angle. Strong blocking during horse contact was required to get successful performance and obtain high scores. Modified deterministic model showed that round-off entrance and takeoff angles and resultant velocity of the center of mass (CM) during the roundoff phase were the starting variables affecting performance in the following kinematics. Knee angle at landing, a highly influential variable on the obtained point, was only determined by judges' decision without significant correlative relationship with previous kinematic variables. Conclusion: The obtained scores highly depended on kinematic variables of post-flight and horse contact phases that were affected by those from the previous phases including round-off postures and resultant velocity of the body center of mass.

Relationship between the Impact Peak Force and Lower Extremity Kinematics during Treadmill Running

  • Ryu, Ji-Seon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.3
    • /
    • pp.159-164
    • /
    • 2018
  • Objective: The aims of this study were to determine the impact peak force and kinematic variables in running speed and investigate the relationship between them. Method: Thirty-nine male heel strike runners ($mean\;age=21.7{\pm}1.6y$, $mean\;mass=72.5{\pm}8.7kg$, $mean\;height=176.6{\pm}6.1cm$) were recruited in this investigation. The impact peak forces during treadmill running were assessed, and the kinematic variables were computed using three-dimensional data collected using eight infrared cameras (Oqus 300, Qualisys, Sweden). One-way analysis of variance ANOVAwas used to investigate the influence of the running speed on the parameters, and Pearson's partial correlation was used to investigate the relationship between the impact peak force and kinematic variables. Results: The running speed affected the impact peak force, stride length, stride frequency, and kinematic variables during the stride phase and the foot angle at heel contact; however, it did not affect the ankle and knee joint angles in the sagittal plane at heel contact. No significant correlation was noted between the impact peak force and kinematic variables in constantrunning speed. Conclusion: Increasing ankle and knee joint angles at heel contact may not be related to the mechanism behind reducing the impact peak force during treadmill running at constant speed.

Comparison of Kinematic Variables of the Club Head, Golf Ball and Body Alignment according to Swing Plane during Golf Driver Swing (골프 드라이버 스윙 시 스윙 플레인에 따른 클럽 헤드 및 골프볼의 운동학적 변인과 신체 정렬 변인의 비교 분석)

  • Young-Tae, Lim;Moon-Seok, Kwon;Jae-Woo, Lee
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.4
    • /
    • pp.147-152
    • /
    • 2022
  • Objective: The purpose of this study was to analyze the effects of club head and golf ball kinematics and body alignment according to the swing plane during golf driver swing. Method: Sixteen college golfers participated in this study. Kinematic data of the club head and golf ball were collected using golf swing analysis system (Trackman Ver. 3e). The body alignment variables were collected using 8 motion capture system. An Independent samples t-test was used for comparison between the Out-to-In group and In-to-Out group, and the statistical significance level was set at .05. Results: For the club head related variables, club path and club face angle showed higher values in Out-to-In swing plane than In-to-Out swing plane. For the kinematic variables of the golf ball, the total distance showed a higher value in the In-to-Out swing plane than that of the Out-to-In swing plane. For the body alignment, the In-to-Out swing plane showed higher values than the Out-to-In swing plane for the pelvis rotation angle and trunk rotation angle. Conclusion: This study suggest that it would be more effective to use the In-to-Out swing plane for increasing the total distance during the golf driver swing.

The Case Study of A Kinematic Analysis of the Right-Straight Punch in Korean National Representative Boxers (복싱 국가대표선수 라이트 스트레이트 펀치 동작의 Kinematic 특성분석-사례연구)

  • Kim, Eui-Hwan;Kim, Jin-Pyo;Lee, Jin-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.293-309
    • /
    • 2003
  • The purpose of this study was to analyze the kinematic variables of the right-straight punch(RSP) in boxing with three-dimensional analysis technical methods. The subjects are boxers who have been playing in national boxing representative team and the RSP is their special favorite technique, The right-straight punches were filmed on 16mm video cameras(30frames/sec.) The kinematic variables were temporal, postural and center of gravity(COG). The mean and the standard deviation of variables have been obtained and used as basic factors for examining characteristics of the RSP by out-boxers. From the data analysis and discussion, the following conclusions have been drawn. 1) Temporal variables It is a significant characteristic that LDJ and KDM s' the amount of elapsed time(EF) needed for both an attack and a defense were similar : ET for stretch-out of attack-arm was $0.52{\pm}0.04\;sec$. and return was $0.54{\pm}0.01\;sec$. Therefore, a defense motion is as important as an attack motion. 2) Posture variables When the subjects performed a RSP, the significant characteristic of the ankle angle was that it wasn't completely returned to the original position after stretching-out. Therefore it is necessary to do supplementary exercises, such as side steps, to move the center of gravity more effectively. The hee angle was not fully stretched either. In regard to the hip angle, it should be rotated with all strength to harmonize with the direction of movement. 3) Center of Gravity(COG) variables When both LDJ and KDM performed a RSP, a significant characteristic was the transformation of sagittal view rather than transverse or frontal views.

Inverse Kinematics of Complex Chain Robotic Mechanism Using Ralative Coordinates (상대좌표를 이용한 복합연쇄 로봇기구의 역기구학)

  • Kim, Chang-Bu;Kim, Hyo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3398-3407
    • /
    • 1996
  • In this paper, we derive an algorithm and develope a computer program which analyze rapidly and precisely the inverse kinematics of robotic mechanism with spatial complex chain structure based on the relative coordinates. We represent the inverse kinematic problem as an optimization problem with the kinematic constraint equations. The inverse kinematic analysis algorithm, therefore, consists of two algorithms, the main, an optimization algorithm finding the motion of independent joints from that of an end-effector and the sub, a forward kinematic analysis algorithm computing the motion of dependent joints. We accomplish simulations for the investigation upon the accuracy and efficiency of the algorithm.

Kinematic Modeling of Mobile Robots by Transfer Method of Augmented Generalized Coordinates (확장된 좌표계 전환기법에 의한 모바일 로봇의 기구학 모델링)

  • Kim, Wheekuk;Kim, Do-Hyung;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.233-242
    • /
    • 2002
  • A kinematic modeling method is proposed which models the sliding and skidding at the wheels as pseudo joints and utilizes those pseudo joint variables as augmented variables. Kinematic models of various type of wheels are derived based on this modeling method. Then, the transfer method of augmented generalized coordinates is applied to obtain inverse and forward kinematic models of mobile robots. The kinematic models of five different types of planar mobile robots are derided to show the effectiveness of the proposed modeling method.

Kinematic Characteristics according to Types of Putter Head on Pro Golfer's 4 Meter Putts (프로골퍼의 4m 퍼팅시 퍼터 헤드형태에 따른 운동학적 특성)

  • Lee, Geun-Hyuk;So, Jae-Moo
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.319-326
    • /
    • 2013
  • The objective of this study is to help golfers to select adequate putters and to provide golfers basic scientific data for improving athletic performance by showing differences of kinematic variables according to the shape of putter head. In this research three right-handed male pro-golfer who are listed at KPGA were studied and three video camera (GR-HD1KR, JVC, Japan) were used and recording speed was 60 frame/sec during the research. In this study kinematic variables were calculated using Kwon3D XP program and analysed on the 4 events and 3 phases. This study showed the following results : (1) The swing of heel-toe putter showed longer time than that of face balanced putter, and there are statistical significant difference of kinematic variables of each objective (2) As of the trajectory of putter head, heel-toe putter showed more approximating curve trajectory than that of in-between, face balanced putter on the X-axis (3) heel-toe putter showed longer distance follow-through than that of other putters by statistically significant difference on the Y-axis (4) Heel-toe putter showed longer distance swing trajectory over the ground than that of other putters by statistically significant difference on the Z-axis.