• 제목/요약/키워드: kinematic tolerance synthesis

검색결과 3건 처리시간 0.016초

컨피규레이션 공간을 이용한 기구학적 공차 설계 (Kinematic Tolerance Synthesis Using Generalized Configuration Spaces)

  • 경민호
    • 한국CDE학회논문집
    • /
    • 제10권4호
    • /
    • pp.284-292
    • /
    • 2005
  • This paper presents a new framework of kinematic tolerance synthesis and describes the implemented algorithm for planar mechanical systems comprised of higher kinematic pairs. Input to the synthesis algorithm is a parametric model of the mechanical system with allowed parameter ranges (tolerance ranges). The model is specified as the part profiles consisting of line and arc segments and the motion axes along which each part moves. The algorithm analyzes tolerance in generalized configuration space, called contact zones bounding the worst-case variations, and identifies bad system variations. The bad system variations then are removed out of the parameter ranges by adjusting the nominal parameter values if possible and then shrinking the ranges otherwise. This cycle is repeated until no more bad variations we found. I show the effectiveness of the algorithm by case studies on several mechanisms.

근사 합성법을 이용한 5-SS 멀티 링크 현가장치의 기구학적 설계 (Approximate Synthesis of 5-SS Multi Link Suspension System)

  • 김선평;심재경;안병의;이언구
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2665-2671
    • /
    • 2000
  • Dimensional Synthesis, which is apart of kinematic synthesis, is to determine the dimensions of a mechanism of preconceived typer for a specified task and prescribed performance. In this paper, in an effort to provide designers with flexibility, a dimensional approximate synthesis method is presented for utilizing prescribed tolerance both the displacement and joint positions of a mechanism to be synthesized. For this, a constrained optimization problem is formulated with displacement parameters and joint positions as variables. The proposed method is applied to the synthesis of a 5-SS multi link suspension mechanism. The method discussed here, however, can be easily applied to any mechanism of which the kinematic constraint equations can be derived.

조립 및 기구학 구속 조건, 공차를 포함하는 기계 조립체의 개념적 정보 모델 (A Conceptual Information Model of Mechanical Assemblies Incorporating Assembly and Kinematic Constraints, and Tolerances)

  • 한영현
    • 한국CDE학회논문집
    • /
    • 제10권2호
    • /
    • pp.133-142
    • /
    • 2005
  • This paper proposes an object-oriented conceptual information model of mechanical assemblies, named open assembly model (OAM). The proposed assembly model primarily defines hierarchical relationships between parts and subassemblies. Together with the assembly hierarchy. the model also provides a way to represent tolerances, kinematic information, and parametric assembly constraints. Relational information such as mating conditions and degree of freedom between parts and subassemblies is captured via assembly features and relationships thereof. The information model is described using class diagrams of the Unified Modeling Language (UML), and instance diagrams are used to exemplify the proposed information model. The conceptual model presented in this paper is an integrated information model for assembly representation, which could supply necessary information for tolerance analysis and synthesis, kinematic simulation, and assembly simulation. Such a conceptual information model plays an important role for the exchange of information between modeling, analysis and planning systems. Hence, the proposed model could serve as a framework for developing data exchange standards of mechanical assemblies. The proposed model is demonstrated through a case study of a planetary gear assembly.