• Title/Summary/Keyword: kinematic model

Search Result 741, Processing Time 0.029 seconds

A Novel Kinematic Design of a Knee Orthosis to Allow Independent Actuations During Swing and Stance Phases (회전기 및 착지기 분리 구동을 가능케 하는 새로운 무릎 보장구의 기구부 설계)

  • Pyo, Sang-Hun;Kim, Gab-Soon;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.814-823
    • /
    • 2011
  • Nowadays many neurological diseases such as stroke and Parkinson diseases are continually increasing. Orthotic devices as well as exoskeletons have been widely developed for supporting movement assistance and therapy of patients. Robotic knee orthosis can compensate stiff-knee gait of the paralyzed limb and can provide patients consistent assistance at wearable environments. With keeping a robotic orthosis wearable, however, it is not easy to develop a compact and safe actuator with fast rotation and high torque for consistent supports of patients during walking. In this paper, we propose a novel kinematic model for a robotic knee orthosis to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The suggested kinematic model is composed of a hamstring device with a slide-crank mechanism, a quadriceps device with five-bar/six-bar links, and a patella device for knee covering. The quadriceps device operates in five-bar links with 2-dof motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The kinematics and velocity/force relations are analyzed for the quadriceps and hamstring devices. Finally, the adequate actuators for the suggested kinematic model are designed based on normal gait requirements. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking.

The compensation of kinematic differences of a robot using image information (화상정보를 이용한 로봇기구학의 오차 보정)

  • Lee, Young-Jin;Lee, Min-Chul;Ahn, Chul-Ki;Son, Kwon;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1840-1843
    • /
    • 1997
  • The task environment of a robot is changing rapidly and task itself becomes complicated due to current industrial trends of multi-product and small lot size production. A convenient user-interfaced off-line programming(OLP) system is being developed in order to overcome the difficulty in teaching a robot task. Using the OLP system, operators can easily teach robot tasks off-line and verify feasibility of the task through simulation of a robot prior to the on-line execution. However, some task errors are inevitable by kinematic differences between the robot model in OLP and the actual robot. Three calibration methods using image information are proposed to compensate the kinematic differences. These methods compose of a relative position vector method, three point compensation method, and base line compensation method. To compensate a kinematic differences the vision system with one monochrome camera is used in the calibration experiment.

  • PDF

Complete Parameter Identification of Gough-Stewart platform with partial pose measurements using a new measurement device

  • Rauf, Abdul;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.825-830
    • /
    • 2004
  • Kinematic calibration of Gough-Stewart platform using a new measurement device is presented in this paper. The device simultaneously measures components of position and orientation using commercially available gadgets. Additional kinematic parameters are defined to model the sources of inaccuracies for the proposed measurement device. Computer simulations reveal that all kinematic parameters of the Gough-Stewart platform and the additional kinematic parameters of the measurement device can be identified with the partial pose measurements of the device. Results also show that identification is robust for the initial errors and the noise in measurements. The device also facilitates the automation of easurement procedure.

  • PDF

Kinematic analysis of POSTECH Hand I with new symbolic notation

  • Choi, H.-R.;Chung, W.-K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1764-1769
    • /
    • 1991
  • Recently, dexterous mechanical hands have become of interest in the field of robotics. In this paper, a new symbolic C-Y notation is proposed for the kinematic modeling, and we solve the kinematics of a simplified model of POSTECH Hand 1, which is a 5 fingered, 20 degrees of freedom anthropomorphic hand. POSTECH Hand I is designed to have distinctive kinematic structure and the kinematic analysis of the hand is carried out using C-Y notation. To prove the feasibility of C-Y notation, D-H notation is also applied to the POSTECH Hand 1. In the inverse kinematic analysis, we neglect the fingertip geometry and assume the point contact with 3 degrees of freedom constraints. The configurations which optimize manipulability index[2] was obtained based on the simulation experiments on the SUN-4 graphic workstation using SUNPhigs graphic software.

  • PDF

Calibation and Compensation for the Kinematic Error in Robot Manipulatior (로봇의 기구학적 오차측정과 보상에 관한 연구)

  • 이종신;임성호;조희상;이의훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.545-549
    • /
    • 1993
  • This paper presents the method of calibrating and compensating for the kinematic errors in robot manipulators. A calibration model is developed to represent any geometric errors in the manipulator's structure. A calibration jig is used to find the values of these kinematic errors in the end-effector's position and a calibration algormined for a SSR-6 robot manipulator developed by Samsung Heavy Industry, Daeduk R & D Center. Through this experiment the maximun kinematic error is reduced from 10mm to 0.4mm

  • PDF

Analaysis and design of redundant parallel manipulators (여유 자유도 병렬형 로봇의 분석 및 설계)

  • Kim, Sung-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.482-489
    • /
    • 1997
  • This paper presents the analysis of the kinematics and dynamics of redundant parallel manipulators, and provides design guides for advanced parallel mainpulators with high performance. Three types of redundancies are considered which include the redundancies in serial chain, joint actuation, and parallelism. First, the kinematic and dynamic models of a redundant parallel manipulator are obtained in both joint and Cartesian spaces, and the kinematic and dynamic manipulabilities are defined for the performance evaluation. The effects of the three types of redundancies on the kinematic and dynamic performance of a parallel manipulator are then analyzed and compared, providing a set of guides for the design of advanced parallel manipulators. Finally, the simulation results using planer parallel manipulators are given.

  • PDF

Kinematic Synthesis and Analysis of RSS-SC Suspension System Using Acceptable Tolerances of Motion (운동의 허용공차를 이용한 RSSS-SC 현장장치의 기구학적 설계)

  • 김선평;심재경
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2672-2679
    • /
    • 2000
  • In synthesizing and RSSS-SC mechanism that is the kinematic model of the McPherson strut suspension system in automobiles, the design equations for R-S, S-S and S-C dyads should be solved separately for a given set of prescribed positions. The number of prescribed positions that the RSSS-SC mechanism can be synthesized is up to three because of the S-C dyad. This limitation may cause unsatisfactory results in synthesized joint positions. This paper presents a kinematic synthesis method to place the joints of an RSSS-SC mechanism in desired boundaries by varying the prescribed positions of the mechanism within acceptable tolerances. The sensitivity analysis of the joint positions is used determine which displacement parameter should be altered to fulfill this task.

Inverse Kinematic and Dynamic Analyses of 6-DOF PUS Type parallel Manipulators

  • Kim, Jong-Phil;Jeha Ryu
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • This paper presents inverse kinematic and dynamic analyses of HexaSlide type six degree-of-freedom parallel manipulators. The HexaSlide type parallel manipulators (HSM) can be characterized as an architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. In the inverse kinematic analyses, the slider and link motion (position, velocity, and acceleration) is computed given the desired mobile platform motion. Based on the inverse kinematic analysis, in order to compute the required actuator forces given the desired platform motion, inverse dynamic equations of motion of a parallel manipulator is derived by the Newton-Euler approach. In this derivation, the joint friction as well as all link inertia are included. Relative importance of the link inertia and joint frictions on the computed torque is investigated by computer simulations. It is expected that the inverse kinematic and dynamic equations can be used in the computed torque control and model-based adaptive control strategies.

Kinematic Optimum Design of a Torsion-Beam Suspension Using Genetic Algorithms (유전 알고리듬을 이용한 토션빔 현가장치의 기구학적 최적설계)

  • Ok, Jin-Kyu;Baek, Woon-Kyung;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.25-30
    • /
    • 2006
  • This study is about an optimum design to improve the kinematic and compliance characteristics of a torsion-beam suspension system. The kinematic and compliance characteristics of an initial design of the suspension was obtained through a roll-mode analysis. The objective function was set to minimize within design constraints. The coordinates of the connecting point between the torsion-beam and the trailing arm were treated as design parameters. Since the torsion-beam suspension has large nonlinear effects due to kinematic and elastic motion, Genetic Algorithms were employed for the optimal design. The optimized results were verified through a double-lane change simulation using the full vehicle model.

Comparison of Springback Modes in the Stamping Process of an S-rail with HSS according to the Hardening Model (경화모델에 따른 고강도강판 S-rail 성형공정에서의 스프링백 모드 비교)

  • Choi, B.H.;Lee, J.W.;Kim, S.H.;Lee, M.G.;Kim, H.K.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.30-35
    • /
    • 2013
  • In this study, springback amounts of an S-rail are quantitatively compared according to the hardening model using a finite element simulation for the stamping process with high strength steels. For comparison of the hardening models, two types of hardening models were investigated. The two models were isotropic hardening and kinematic hardening. For the analysis with kinematic hardening, the Yoshida-Uemori model was selected. Five kinds of springback modes were measured at designated sections and a comparison was made between the experiment and the analyses with two types of hardening models. The analysis results show that the springback in the flange and the wall curl are predicted more accurately with a kinematic hardening model.