• Title/Summary/Keyword: kinematic free surface condition

Search Result 31, Processing Time 0.023 seconds

COMPUTATION OF THE DYNAMIC FORCE COMPONENT ON A VERTICAL CYLINDER DUE TO SECOND ORDER WAVE DIFFRACTION

  • Bhatta, Dambaru
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.45-60
    • /
    • 2008
  • Here we consider the evaluation of the the dynamic component of the second order force due to wave diffraction by a circular cylinder analytically and numerically. The cylinder is fixed, vertical, surface piercing in water of finite uniform depth. The formulation of the wave-structure interaction is based on the assumption of a homogeneous, ideal, incompressible, and inviscid fluid. The nonlinearity in the wave-structure interaction problem arises from the free surface boundary conditions, namely, dynamic and kinematic free surface boundary conditions. We expand the velocity potential and free surface elevation functions in terms of a small parameter and then consider the second order diffraction problem. After deriving the pressure using Bernoulli's equation, we obtain the analytical expression for the dynamic component of the second order force on the cylinder by integrating the pressure over the wetted surface. The computation of the dynamic force component requires only the first order velocity potential. Numerical results for the dynamic force component are presented.

  • PDF

A Simplified Numerical Method for Simulating the Generation of Linear Waves by a Moving Bottom (바닥의 움직임에 따른 선형파의 생성을 모의할 수 있는 간편 수치해석 기법)

  • Jae-Sang Jung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.2
    • /
    • pp.41-48
    • /
    • 2023
  • In this study, simplified linear numerical method that can simulate wave generation and transformation by a moving bottom is introduced. Numerical analysis is conducted in wave number domain after continuity equation, linear dynamic and kinematic free surface boundary conditions and linear kinematic bottom boundary condition are Fourier transformed, and the results are expressed in space domain by an inverse Fourier transform. In the wavenumber domain, the dynamic free water surface boundary condition and the kinematic free water surface boundary condition are numerically calculated, and the velocity potential in the mean water level (z = 0) satisfies the continuity equation and the kinematic bottom boundary condition. Wave generation and transformation are investigated when the triangular and rectangular shape of bottoms move periodically. The results of the simplified numerical method are compared with the results of previous analytical solutions and agree well with them. Stability of numerical results according to the calculation time interval (Δt) and the calculation wave number interval (Δk) was also investigated. It was found that the numerical results were appropriate when Δt ≤ T(period)/1000 and Δk ≤ π/100.

Free surface effects on 2-D airfoils and 3-D wings moving over water

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.245-264
    • /
    • 2016
  • The iterative boundary element method (IBEM) developed originally before for cavitating two-dimensional (2-D) and three-dimensional (3-D) hydrofoils moving under free surface is modified and applied to the case of 2-D (two-dimensional) airfoils and 3-D (three-dimensional) wings over water. The calculation of the steady-state flow characteristics of an inviscid, incompressible fluid past 2-D airfoils and 3-D wings above free water surface is of practical importance for air-assisted marine vehicles such as some racing boats including catamarans with hydrofoils and WIG (Wing-In-Ground) effect crafts. In the present paper, the effects of free surface both on 2-D airfoils and 3-D wings moving steadily over free water surface are investigated in detail. The iterative numerical method (IBEM) based on the Green's theorem allows separating the airfoil or wing problems and the free surface problem. Both the 2-D airfoil surface (or 3-D wing surface) and the free surface are modeled with constant strength dipole and constant strength source panels. While the kinematic boundary condition is applied on the airfoil surface or on the wing surface, the linearized kinematic-dynamic combined condition is applied on the free surface. The source strengths on the free surface are expressed in terms of perturbation potential by applying the linearized free surface conditions. No radiation condition is enforced for downstream boundary in 2-D airfoil and 3-D wing cases and transverse boundaries in only 3-D wing case. The method is first applied to 2-D NACA0004 airfoil with angle of attack of four degrees to validate the method. The effects of height of 2-D airfoil from free surface and Froude number on lift and drag coefficients are investigated. The method is also applied to NACA0015 airfoil for another validation with experiments in case of ground effect. The lift coefficient with different clearance values are compared with those of experiments. The numerical method is then applied to NACA0012 airfoil with the angle of attack of five degrees and the effects of Froude number and clearance on the lift and drag coefficients are discussed. The method is lastly applied to a rectangular 3-D wing and the effects of Froude number on wing performance have been investigated. The numerical results for wing moving under free surface have also been compared with those of the same wing moving above free surface. It has been found that the free surface can affect the wing performance significantly.

The deformation of a free surface due to the impact of a water droplet

  • Kwon, Sun-Hong;Park, Chang-Woo;Lee, Seung-Hun;Shin, Jae-Young;Choi, Young-Myung;Chung, Jang-Young;Isshiki, Hiroshi
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.28-31
    • /
    • 2011
  • An attempt was made to compute the free surface deformation due to the impact of a water droplet. The Cauchy Poisson, i.e. the initial value problem, was solved with the kinematic and dynamic free surface boundary conditions linearized. The zero order Hankel transformation and Laplace transform were applied to the related equations. The initial condition for the free surface profile was derived from a captured video image. The effect of the surface tension was not significant with the water mass used in this investigation. The computed and observed free surface deformations were compared.

Simulation of Turbulent Flow and Surface Wave Fields around Series 60 $C_B$=0.6 Ship Model

  • Kim, Hyoung-Tae;Kim, Jung-Joong
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.1
    • /
    • pp.38-54
    • /
    • 2001
  • A finite difference method for calculating turbulent flow and surface wave fields around a ship model is evaluated through the comparison with the experimental data of a Series 60 $C_B$=0.6 ship model. The method solves the Reynolds-averaged Navior-Stokes Equations using the non-staggered grid system, the four-stage Runge-Kutta scheme for the temporal integration of governing equations and the Bladwin-Lomax model for the turbulence closure. The free surface waves are captured by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and free-surface conforming grids are generated at each time step so that one of the grid surfaces coincides always with the free surface. The computational results show an overall close agreement with the experimental data and verify that the present method can simulate well the turbulent boundary layers and wakes as well as the free-surface waves.

  • PDF

Code Development for Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석 코드 개발)

  • Kim J.J.;Kim H.T.;Van S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.145-155
    • /
    • 1998
  • A computer code has been developed for the computation of the viscous flow around a ship model with the free surface. In this code, the incompressible Reynolds-averaged Navier-Stokes equations are solved numerically by a finite difference method which employes second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration of the governing equations. For the turbulence closure, a modified version of the Baldwin-Lomax model is exploited. The location of the free surface is determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and the boundary-fitted grid is generated at each time step so that one of the grid surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition is applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method and the computer code developed in the present study, the numerical computations are carried out for both Wigley parabolic hull and Series 60 $C_B=0.6$ ship model and the computational results are compared with the experimental data.

  • PDF

Analytical Approximation in Deep Water Waves

  • Shin, JangRyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • The objective of this paper is to present an analytical solution in deep water waves and verify the validity of the theory (Shin, 2015). Hence this is a follow-up to Shin (2015). Instead of a variational approach, another approach was considered for a more accurate assessment in this study. The products of two coefficients were not neglected in this study. The two wave profiles from the KFSBC and DFSBC were evaluated at N discrete points on the free-surface, and the combination coefficients were determined for when the two curves pass the discrete points. Thus, the solution satisfies the differential equation (DE), bottom boundary condition (BBC), and the kinematic free surface boundary condition (KFSBC) exactly. The error in the dynamic free surface boundary condition (DFSBC) is less than 0.003%. The wave theory was simplified based on the assumption tanh $D{\approx}1$ in this paper. Unlike the perturbation method, the results are possible for steep waves and can be calculated without iteration. The result is very simple compared to the 5th Stokes' theory. Stokes' breaking-wave criterion has been checked in this study.

A Computational Study on Turbulent Flows around Single and Tandem Two-Dimensional Hydrofoils with Shallow Submergence

  • Kim, H.T.;Park, J.B.;Kim, W.J.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.1
    • /
    • pp.11-20
    • /
    • 2000
  • Reynolds-averaged Navier-Stokes equations are numerically solved using a secondorder finite difference method for the analysis of turbulent flows around single and tandem hydrofoils advancing under the free surface. The location of the free surface, not known a priori, is computed from the kinematic free surface condition and the computational grid is conformed at each iteration to the free surface deformation. The eddy viscosity model of Baldwin-Lomax is employed for the turbulence closure. The method is validated through the comparision of the numerical results with the experimental data for a single hydrofoil of a Joukowski foil section. A computational study is also carried out to investigate the effect of the submergence depth and the Froude number on the lift and the drag of the hydrofoil. For tandem hydrofoils, computations are performed for several separation distances between the forward and aft foils to see the interference effect. The result shows clearly how the lift and drag change with the separation distance.

  • PDF

Development of Three-Dimensional Finite Element Model Using Upwind Weighting Scheme for River Flow (하천흐름해석을 위한 상향가중의 3차원 유한요소모형 개발)

  • Han, Kun-Yeun;Baek, Chang-Hyun;Choi, Seung-Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.409-413
    • /
    • 2005
  • Even though the relative importance of length scale of flow system allow us to simplify three dimensional flow problem to one or two dimensional representation, many systems still require three dimensional analysis. The objective of this study is to develop an efficient and accurate finite element model for analyzing and predicting three dimensional flow features in natural rivers and to offend to model spreading of pollutants and transport of sediments in the future. Firstly, three dimensional Reynolds averaged Navier-Stokes equations with the hydrostatic pressure assumption in generalized curvilinear coordinates were combined with the kinematic free-surface condition. Secondly. to simulate realistic high Reynolds number flow, the model employed the Streamline Upwind/Petrov-Galerkin(SU/PG) scheme as a weighting function for the finite element method in conjunction with an appropriate turbulence model(Smagorinsky scheme for the horizontal plain and Mellor-Yamada scheme for the vertical direction). Several tests is performed for the purpose of validation and verification of the developed model. A simple rectangular channel, 5-shaped and U-shaped channel are used for tests and comparisons are made with RMA-10 model. Runs for each case is converged stably without a oscillation and calculated water-surface deformation, longitudinal and transversal velocities, and velocity vector fields are in good agreement with the results of RMA-10 model.

  • PDF

NUMERICAL SIMULATIONS OF FULLY NONLINEAR WAVE MOTIONS IN A DIGITAL WAVE TANK (디지털 파랑 수조 내에서의 비선형 파랑 운동의 수치시뮬레이션)

  • Park, J.C.;Kim, K.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.90-100
    • /
    • 2006
  • A digital wave tank (DWT) simulation technique has been developed by authors to investigate the interactions of fully nonlinear waves with 3D marine structures. A finite-difference/volume method and a modified marker-and-cell (MAC) algorithm have been used, which are based on the Navier-Stokes (NS) and continuity equations. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique or the Level-Set (LS) technique developed for one or two fluid layers. In this paper, some applications for various engineering problems with free-surface are introduced and discussed. It includes numerical simulation of marine environments by simulation equipments, fully nonlinear wave motions around offshore structures, nonlinear ship waves, ship motions in waves and marine flow simulation with free-surface. From the presented simulations, it seems that the developed DWT simulation technique can handle various engineering problems with free-surface and reliably predict hydrodynamic features due to the fully-nonlinear wave motions interacting with such marine structures.