• 제목/요약/키워드: kinematic

검색결과 2,912건 처리시간 0.031초

KINEMATIC GPS POSITIONING WITH NETWORK-DERIVED IONOSPHERIC DELAYS

  • Hong, Chang-Ki;Grejner-Brzezinska, Dorota A.;Won, Joong-Sun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.386-389
    • /
    • 2007
  • Currently, fast and accurate long baseline positioning in kinematic mode is a challenging topic, but positional accuracy can be improved with the help of the network-derived external ionospheric corrections. To provide not only ionospheric corrections, but also their variances, satellite-by-satellite interpolation for the ionospheric delays is performed using the least-squares collocation (LSC) method. Satellite-by-satellite interpolation has the advantage in that the vertical projection used in single-layer ionospheric model is not required. Also, more reliable user positioning and the corresponding accuracy assessment can be obtained by providing not only external ionospheric corrections but also their variances. The rover positioning with and without the external ionospheric delays in both rapid-static and kinematic mode was performed and analyzed. The numerical results indicate that the improvement in the positioning quality is achieved using the proposed method. With the TAMDEF network in Antarctica, 18 % improvement in mean time-to-fix in kinematic mode was achieved.

  • PDF

다양한 링크구동 기계프레스에 대한 기구학적 분석 (Kinematic Analysis of Several Linkage Drives for Mechanical Presses)

  • 구형욱;황병복;임중연;이호용
    • 소성∙가공
    • /
    • 제6권6호
    • /
    • pp.471-481
    • /
    • 1997
  • This paper is concerned with the kinematic analysis of several linkage drives for mechanical presses. Load and velocity characteristics of conventional presses are illustrated and a design of new drive for a mechanical press is represented. In this regard, a crank-slider mechanism with arc crank-pin guide is introduced and compared with other linkage drives. Kinematic performances are analyzed in respect of load capacity, slide velocity characteristics using a developed SS-Plot program. The new linkage drive turns out to be effective in terms of load and velocity characteristics, and productivity.

  • PDF

3관절 매니퓰레이터의 일반적 조합에 대한 역기구학적 폐형해 (Closed Form Inverse Kinematic Solutions for General Combination of Three-Joint Manipulator)

  • 한규범
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.363-368
    • /
    • 1995
  • A general method of solving inverse kinematics of three-joint manipulator composed of revolute joints or prismatic joints or combinations of those joints is presented in this study. In completing real-time control, it is very important to obtain the closed form solutions of inverse kinematics rather than iterative numerical solutions, because iterative numerical solutions are generally much slower than the corresponding closed form solutions. If it is possible to obtain the inverse kinematic solutions for general cases of considering twist anlges and offsets, the manipulator work space can be designed and enlarged more effciently for specific task. Moreover, in idustrial manipulators, the effect of main three joints is larger than that of the other three joints related to orientation in the view of work space. Therfore the solutions of manin three-joint are considered. Even The inverse kinematic equations are complicatedly coupled, the systematical solving process by using symbolic calculation is presented.

  • PDF

이중 후방 응력 경화 모델을 이용한 주기 하중에서의 래쳐팅 거동 현상 연구 (Simulation of Ratcheting Behavior under Stress Controlled Cyclic Loading using Two-Back Stress Hardening Constitutive Relation)

  • 홍성인;황두순;윤수진
    • 소성∙가공
    • /
    • 제17권1호
    • /
    • pp.19-26
    • /
    • 2008
  • In the present work, the ratcheting behavior under uniaxial cyclic loading is analyzed. A comparison between the published and the results from the present model is also included. In order to simulate the ratcheting behavior, Two-Back Stress model is proposed by combining the non-linear Armstrong-Frederick rule and the non-linear Phillips hardening rule based on kinematic hardening equation. It is shown that some ratcheting behaviors can be obtained by adjusting the control material parameters and various evolutions of the kinematic hardening parameter can be obtained by means of simple combination of hardening rules using simple rule of mixtures. The ultimate back stress is also derived for the present combined kinematic hardening models.

유전 알고리즘을 이용한 현가장치의 기구학적 최적설계 (Optimum Design of Suspension Systems Using a Genetic Algorithm)

  • 이덕희;김태수;김재정
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.138-147
    • /
    • 2000
  • Vehicle suspension systems are parts which effect performances of a vehicle such as ride quality, handing characteristics, straight performance and steering effort etc. Kinematic design is a decision of joints` position for straight performance and steering effort. But, when vehicle is rebounding and bumping, chang of joints` displacement is nonlinear and a surmise of straight performance and steering effort at that joints` position is difficult. So design of suspension systems is done through a inefficient method of tried-and-error depending on designer`s experience. In this paper, kinematic design of suspension systems was done through the optimal design using a genetic algorithm. For this optimal design, the function for quantification of straight performance and steering effort was made, and the kinematic design method of suspension systems having this function as the objective function was suggested.

  • PDF

Indentification and Compensation of Robot Kinematic Parameters for Positioning Accuracy Improvement

  • 김두형;국금환
    • 한국기계연구소 소보
    • /
    • 통권19호
    • /
    • pp.81-92
    • /
    • 1989
  • This paper presents a simple identification method of the actual kinematic parameters for the robot with parallel joints. It is known that Denavit-Hartenberg's coordinate system is not useful for nearly parallel joints. In this paper, the coordinate frames are reassigned to model the kinematic parameter between nearly parallel joints by four parameters. The proposed identification method uses a straight ruler about 1m long. A robot hand is placed by using a teaching pendant at the prescribed points on the ruler, and corresponding error function is defined. The identified kinematic parameters which make the error function zero are obtained by iterative least square error method based on the singular value decomposition. In the compensation of joint angles, only the position is considered because the usual applications of robot do not require a precise orientation control.

  • PDF

2RPR-RP 병렬 기구의 기구학 해석 및 최적설계 (Kinematic Analysis and Optimal Design of 2RPR-RP Parallel Manipulator)

  • 남윤주;이육형;박명관
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1509-1517
    • /
    • 2005
  • This paper presents the two degree-of-freedom(DOF) planar parallel mechanism called 2R$\underline{P}$R-RP manipulator, whose degree-of freedom is dependent on a passive constraining leg connecting the base and the platform. First, the kinematic analysis of the mechanism is performed analytically: the inverse and forward kinematic problems are solved in the closed font the practical workspace is systematically derived, and all of the singular configurations are examined. Then, in order to determine the geometric parameters and the operating limits of the actuators, the optimization of the mechanism is performed considering its dexterity and stiffness. Finally, the kinematic performances of the optimized mechanism are evaluated through comparing to the 5-bar parallel manipulator.

스튜어트 플랫폼의 기구학적 교정기법에 관한 연구 (Study on Kinematic Calibration Method of Stewart Platforms)

  • 구상화;손권
    • 제어로봇시스템학회논문지
    • /
    • 제7권2호
    • /
    • pp.168-172
    • /
    • 2001
  • The accuracy problem of robot manipulators has long been one of the principal concerns in robot design and control. A practical and economical way of enhancing the manipulator accuracy, without affecting its hardware, is kinematic calibration. In this paper an effective and practical method is presented for kinematic calibration of Stewart platforms. In our method differential errors in kinematical parameters are linearly related to differential errors in the platform pose, expressed through the forward kinematics. The algorithm is tested using simulated measurement in which measurement noise is included.

  • PDF

평면형 병렬 기구의 기구학적 최적설계: 2RRR-RP기구에 적용 (Optimal Kinematic Design of Planar Parallel Mechanisms: Application to 2RRR-RP Mechanism)

  • 남윤주;이육형;박명관
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.464-472
    • /
    • 2006
  • This paper presents the two degree-of-freedom (DOF) planar parallel mechanism, called the $2{\underline{R}}RR-RP$ manipulator, whose degree-of-freedom is dependent on an additional passive constraining leg connecting the base and the platform. First, the kinematic analysis of the mechanism is performed: the inverse and forward kinematic problems are analytically solved, the workspace is systematically derived, and all of the singular configurations are examined. Then, in order to determine the geometric parameters the optimization of the mechanism is performed considering its dexterity, stiffness, and space utilization. Finally, the kinematic performances of the optimized mechanism are evaluated through the comparison study to the conventional 5-bar parallel manipulator.

비대칭 구조를 갖는 두 협조 로봇의 컴플라이언스 제어방법 (A compliant control method for cooperating two arms with asymetric kinematic structures)

  • 여희주;서일홍
    • 전자공학회논문지B
    • /
    • 제33B권7호
    • /
    • pp.40-50
    • /
    • 1996
  • An unified compliant control algorithm to regulate the force by dual arms is proposed, where tow arms are treated as one arm in a kinematic viewpoint. The force error calculated form the information of two force/torque sensors attached to the end of each arm is transferred to minimum actuator coordinates, and then is distributed to total system actuator coordinates. The position adjustment at the total actuator coordinates is computed based on the effective computed based on the effective compliance matrix with respect to total actuator coordinates, which is obtained by coordinate transformation between the task coordinates and the total actuator coordinates. An experiment is carried out for dual arms with asymmetric kinematic structure to control an interaction force between manipulators and the environment. The performances of the proposed control algorithm are experimentally compared to those of dual arms employing master/slave scheme. The proposed compliant control algorithm not only ouperforms other algorithms, but also can be treated as an unified approach n the sense that it can be applied to arbitrary dual arm systems with general kinematic structures.

  • PDF