• 제목/요약/키워드: killing effect

검색결과 220건 처리시간 0.036초

Isolation and Characterization of Two Korean Mistletoe Lectins

  • Kang, Tae-Bong;Song, Seong-Kyu;Yoon, Taek-Joon;Yoo, Yung-Choon;Lee, Kwan-Hee;Her, Erk;Kim, Jong-Bae
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.959-965
    • /
    • 2007
  • Two isolectins (KML-IIU and the KML-IIL) were individually isolated from the previously reported Korean mistletoe lectin, KML-C, by using an immunoaffinity column. Molecular weights of the KML-IIU and the KML-IIL were 64 kDa and 60 kDa respectively. Both of the lectins were composed of heterogeneous A and B subunits linked with a disulfide bond, and showed the same carbohydrate-binding specificities for Gal and GalNAc. However, they are different not only in biophysical properties (glycosylation and amino acid compositions) but also bioactivities (cell killing and cytokine induction). The KML-IIL showed 17-145 times stronger in cytotoxicities to various human and mouse cancer cell lines than the KML-IIU. The KML-IIL also induced TNF-$\alpha$ secretion from mouse peritoneal macrophages 4.5 times better than the KML-IIU. The results demonstrated isolectins in Korean mistletoe were varied in bioactivities and the KML-IIL may be developed as an anti-cancer agent.

Novel high performanced and fouling resistant PSf/ZnO membranes for water treatment

  • Sarihan, Adem;Eren, Erdal
    • Membrane and Water Treatment
    • /
    • 제8권6호
    • /
    • pp.563-574
    • /
    • 2017
  • Antibacterial effective, high performanced, novel ZnO embedded composite membranes were obtained by blendig ZnO nanoparticles with polysulfone. IR, TG/DTG, XRD and SEM analysis were performed to characterize structure and morphology of ZnO nanoparticles and composite membranes. Contact angle, EWC, porosity and pore structure properties of composite membranes were investigated. Cross-flow filtration studies were performed to investigation of performances of prepared membranes. It was found from the cross section SEM images that ZnO nanoparticles dispersed homogenously up to additive amount of 2% and the membrane skin layer thicknesses increased in the presence of ZnO. Contact angle of pure PSf membranes were reduced from $70^{\circ}$ to $55^{\circ}$ after addition of 4% ZnO. Porosity of composite membrane contains 1% ZnO was higher about 22% than pure PSf membrane. BSA rejection ratio and PWF of 0.5% ZnO embedded composite membrane became 2.2 and 2.3 times higher than pure PSf membrane. It was determined from flux recovery ratios that ZnO additive increased the fouling resistance of composite membranes. Also, the bacterial killing ability of ZnO is well known and there are many researches related to this in the literature. Therefore, it is expected that prepared composite membranes will show antibacterial effect.

Enhanced Anti-tumor Efficacy of Aspirin Combined with Triptolide in Cervical Cancer Cells

  • Chen, Rong-Hui;Tian, Yong-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.3041-3044
    • /
    • 2013
  • Background: The non-steroidal anti-inflammatory drug (NSAID) aspirin (acetylsalicylic acid) is an inhibitor of cyclooxygenase enzymes. Recent studies have shown that aspirin could be used as an anti-tumor drug. Triptolide, the major compound extracted from the Chinese herb Tripteryglum wilfordii Hook.f, has now been shown that it can inhibit tumor growth. The aim of this study was to analyze the anti-tumor efficiency of aspirin and triptolide in cervical cancer cells. Methods: Viability of cervical cancer cell lines was assessed by the MTT method at various concentrations of aspirin and triptolide. Siha and HeLa cell apoptotic analysis was performed by flow cytometry. Real time-PCR and Western Blotting were used to analyze the expression of Bcl-2/Bax, Cyclin D1 and p16. Results: Viability in the combination group was significantly decreased as compared with either drug used alone. Expression change of Bcl-2/Bax, CyclinD1 and p16 appeared to play an important role in the synergistic killing effect on cervical cancer cell apoptosis. Conclusion: Aspirin and triptolide combination treatment may have synergistic anti-tumor effects on cervical cancer cells.

임상가검물에서 분리한 Candida sp.의 항진균제 Ketoconazole, 5-Fluorocytosine 및 Amphotericin B의 단독 혹은 복합처리에 의한 항진균력에 대한 연구 (In Vitro Studies of Ketoconazole in Combination with the 5-Fluorocytosine and Amphotericin B against Candida sp. Isolated from Clinical Specimens)

  • 고춘명;박전한
    • 대한미생물학회지
    • /
    • 제21권1호
    • /
    • pp.63-71
    • /
    • 1986
  • The antifungal activities of amphotericin B, 5-fluorocytosine, and ketoconazole in combination of amphotericin B/ketoconazole and 5-fluorocytosine/ketoconazole were determined against 42 strains of Candida spp. isolated from oral cavity. Among 42 strains of Candida species, 36 strains of Candida albicans, 2 strains of Candida parapsilosis and Candida tropicalis 1 strain of Candida krusei and Candida stellatoidea were identified. The minimum inhibitory concentrations(MICs) of amphotericin B, 5-fluorocytosine and ketoconazole for these strains were ranged from 0.05-1.56 mcg/ml, 12.5->100.0 mcg/ml and 0.2-50.0 mcg/ml. In all of the experimental strains, amphotericin B had the greatest antifungal activity on a dilution basis. When a microtiter checkerboard technique was used 5-fluorocytosine acted synergistically with ketoconazole against all strains, whereas amphotericin B has a reduced effect. The killing curve experiments with on strain of Candida albicans WMC-85024 demonstrated that the combination of amphotericin B/ketoconazole and 5-fluorocytosine/ketoconazole produced a decrease in number of colony forming unit of >3 logs in 72 hours.

  • PDF

Monitoring and Characterization of Bacterial Contamination in a High-Purity Water System Used for Semiconductor Manufacturing

  • Kim, In -Seop;Lee, Geon-Hyoung;Lee, Kye-Joon
    • Journal of Microbiology
    • /
    • 제38권2호
    • /
    • pp.99-104
    • /
    • 2000
  • Hydrogen peroxide has been used in cleaning the piping of an advanced high-purity water system that supplies ultra-high purity water (UHPW) for 16 megabyte DRAM semiconductor manufacturing. The level of hydrogen peroxide-resistant bacteria in UHPW water was monitored prior to and after disinfecting the piping with hydrogen peroxide. Most of the bacteria isolated after hydrogen peroxide disinfection were highly resistant to hydrogen peroxide. However, the percentage of resistant bacteria decreased with time. The hydrogen peroxide-resistant bacteria were identified as Micrococcus luteus, Bacillus cereus, Alcaligenes latus, Xanthomonas sp. and Flavobacterium indologenes. The susceptibility of the bacteria to hydrogen peroxide was tested as either planktonic cells or attached cells on glass. Attached bacteria as the biofilm on glass exhibited increased hydrogen peroxide resistnace, with the resistance increasing with respect to the age of the biofilm regrowth on piping after hydrogen peroxide treatment. In order to optimize the cleaning strategy for piping of the high-purity water system, the disinfecting effect of hydrogen preoxide and peracetic acid on the bacteria was evaluated. The combined use of hydrogen peroxide and peracetic acid was very effective in killing attached bacteria as well as planktonic bacteria.

  • PDF

Antimicrobial Potential of Moringa oleifera Seed Coat and Its Bioactive Phytoconstituents

  • Arora, Daljit Singh;Onsare, Jemimah Gesare
    • 한국미생물·생명공학회지
    • /
    • 제42권2호
    • /
    • pp.152-161
    • /
    • 2014
  • The in vitro antimicrobial potential of the unexplored Moringa oleifera seed coat (SC) was evaluated against some Gram-positive and Gram-negative bacteria and yeast pathogens. Antimicrobial studies with various solvent extracts indicated ethyl acetate to be the best extractant, which was used for the rest of the antimicrobial studies as it tested neither toxic nor mutagenic. Gram-positive bacteria including a methicillin resistant Staphylococcus aureus (MRSA) strain were more susceptible with a minimum inhibitory concentration (MIC) range of 0.03-0.04 mg/ml. The antimicrobial pharmacodynamics of the extract exhibited both concentration-dependent and time-dependent killing. Most of the test organisms exhibited a short post antibiotic effect (PAE) except Enterococcus faecalis, Staphylococcus aureus, and Klebsiella pneumoniae 1, which exhibited longer PAEs. Amongst the major phytoconstituents established, flavonoids, diterpenes, triterpenes and cardiac glycosides exhibited inhibitory properties against most of the test organisms. The identified active phytochemicals of the M. oleifera seed coat exhibited antimicrobial potential against a wide range of medically important pathogens including the multidrug-resistant bugs. Hence, the M. oleifera seed coat, which is usually regarded as an agri-residue, could be a source of potential candidates for the development of drugs or drug leads of broad spectrum that includes multidrug-resistant bugs, which are one of the greatest concerns of the $21^{st}$ century.

Antibacterial Activity of Panduratin A and Isopanduratin A Isolated from Kaempferia pandurata Roxb. against Acne-causing Microorganisms

  • Song, Min-Soo;Shim, Jae-Seok;Gwon, Song-Hui;Lee, Chan-Woo;Kim, Han-Sung;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1357-1360
    • /
    • 2008
  • Propionibacterium acnes is the predominant organism in sebaceous regions of the skin and is thought to play an important role in the pathogenesis of inflamed lesions. Antibacterial compounds against P. acnes were isolated from the ethanol extract of Kaempferia pandurata Roxb. and identified as panduratin A and isopanduratin A. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of panduratin A for P. acnes were 2 and $4{\mu}g/mL$, respectively, while those of isopanduratin A were 4 and $8{\mu}g/mL$, respectively. The time-dependent killing effect showed that panduratin A and isopanduratin A completely inhibited the growth of P. acnes at 4 and $8{\mu}g/mL$ in 48 hr, respectively. Panduratin A and isopanduratin A demonstrated high antibacterial activities not only against P. acnes but also other skin microorganisms. The results suggest that panduratin A and isopanduratin A could be employed as natural antibacterial agents to inhibit the growth of acne and skin disease causing microorganisms.

공기감염 전파방지를 위한 UVC 공기살균기 성능평가에 관한 연구 (The Study on the Performance Estimation of UVC Air Sterilizer for Preventing Transmission of Air Borne Contagion)

  • 최상곤;홍진관
    • 설비공학논문집
    • /
    • 제17권6호
    • /
    • pp.581-586
    • /
    • 2005
  • Recently, the use of UVGI system has been increasing in both medical and nonmedical buildings for the control of environmental microorganisms. In the present study, irradiance performance test of UVC lamp was carried out and indoor air sterilization effect of UV ray for preventing transimission of air borne contagion was investigated by using manufactured UVC air sterilizer. Experimental results show that the effective irradiance of UVC lamp is strongly dependent on air velocity and temperature in irradiance performance test. An individual microbiological killing effectiveness experiment also shows that the average kill rate of two microbiological samples such as bacteria and fungus is about $92\%$ by using manufactured UVC air sterilizer. Additionally irradiance performance experimental results also show that the ballast is very important factor to keep up irradiance performance of UVC lamp.

Anticancer Drugs at Low Concentrations Upregulate the Activity of Natural Killer Cell

  • Hyeokjin Kwon;Myeongguk Jeong;Yeeun Kim;Go-Eun Choi
    • 대한의생명과학회지
    • /
    • 제29권3호
    • /
    • pp.178-183
    • /
    • 2023
  • Natural killer (NK) cells are innate cytotoxic lymphoid cells that actively prevent neoplastic development, growth, and metastatic dissemination in a process called cancer immunosurveillance. Regulation of the cytotoxic activity of NK cells relies on integrated interactions between inhibitory receptors and numerous activating receptors that act in tandem to eliminate tumor cells efficiently. Conventional chemotherapy is designed to produce an anti-proliferative or cytotoxic effect on early tumor cell division. Therapies designed to kill cancer cells and simultaneously maintain host anti-tumor immunity are attractive strategies for controlling tumor growth. Depending on the drug and dose used, several chemotherapeutic agents cause DNA damage and cancer cell death through apoptosis, immunogenic cell death, or other forms of non-killing (i.e., mitotic catastrophe, senescence, autophagy). Among stress-induced immunostimulatory proteins, changes in the expression levels of NK cell activating and inhibitory ligands and tumor cell death receptors play an important role in the detection and elimination by innate immune effectors including NK cells. Therefore, we will address how these cytotoxic lymphocytes sense and respond to high and low concentrations of drug-induced stress to the drug cisplatin, among the various types of drugs that contribute to their anticancer activity.

$UV-TiO_2$ 광촉매 반응기에 의한 미생물의 살균효과 (Killing Effects of $UV-TiO_2$ Photocatalytic System on Microorganisms)

  • 김중곤;신용국;이영상;김용호;김시욱
    • 미생물학회지
    • /
    • 제37권2호
    • /
    • pp.130-136
    • /
    • 2001
  • 두가지 형태(1단 반응기와 2단 반응기)의 UV-$TiO_2$광촉매 시스템과 3가지 형태의 $TiO_2$가 코팅된 촉매를 이용하여 미생물에 대한 살균효과를 살펴보았다. 첫번째 형태는 석영관에 $TiO_2$가 박막증착된 것이고 두번째 형태는 glass bead 표면에 $TiO_2$가 코팅된 형태이며 세번째는 alginate bead에 $TiO_2$가 혼합된 형태이다. 1분동안 UV를 조사하였을때 1단 반응기에서 $TiO_2$가 박막증착된 석영관과 $TiO_2$가 코팅된 glass bead의 살균효율은 각각 63.2%와 89.9%이었다. 반응기에 기포를 주입했을 때의 살균효율은 glass bead의 경우 95%로 기포를 주입하지 않았을 때의 90.6%보다 휠씬 효과적이었다. 기포를 주입하면서 광촉매로 alginate bead에 $TiO_2$가 혼합된 것을 이용하였을 경우의 살균효율은 86%이었다. $TiO_2$가 코팅된 glass bead를 이용한 반응기에 기포를 주입하면서 $H_2$$O_2$를 처리하였을 때의 살균정도는 미량농도에서도 매우 효과적이었다. 1단 반응기보다 2단 반응기에서의 살균효율이 더욱 증가하였으며 E. coli에 대한 살균효과가 S. cerevisiae보다 더 높게 나타났다.

  • PDF