• 제목/요약/키워드: keyword-based search

검색결과 317건 처리시간 0.021초

빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법 (A Multimodal Profile Ensemble Approach to Development of Recommender Systems Using Big Data)

  • 김민정;조윤호
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.93-110
    • /
    • 2015
  • 기존의 협업필터링 추천시스템 연구는 상품에 대한 고객의 평점(rating)이나 구매 여부 데이터로부터 하나의 프로파일을 생성하고 이를 기반으로 추천 성능을 향상시킬 수 있는 새로운 알고리즘을 개발하는 위주로 진행되어 왔다. 그러나 빅데이터 환경이 도래하면서 기업이 수집할 수 있는 고객 데이터가 풍부해지고 다양해짐에 따라, 보다 정확하게 고객의 선호도나 행태를 파악하는 것이 가능하게 되었고 이러한 데이터, 즉 퍼스널 빅데이터(personal big data)를 추천시스템에 활용하는 연구의 필요성이 대두되고 있다. 본 연구에서는 마케팅의 시장세분화 이론에 근거하여 퍼스널 빅데이터로부터 고객의 선호도나 행태를 다양한 관점에서 표현할 수 있는 5종의 다중 프로파일(multimodal profile)을 개발하고, 이를 활용하여 협업필터링 추천시스템의 성능을 개선하고자 한다. 제안하는 5종의 다중 프로파일은 프로파일 통합 유사도, 개별 프로파일 유사도 평균, 개별 프로파일 유사도 가중 평균이라는 세 가지 앙상블 기법을 통해 협업필터링의 이웃(neighborhood) 탐색과정에 적용된다. 실제 퍼스널 빅데이터에 본 연구에서 제안하는 방법론을 적용한 결과, 단일 프로파일을 사용하는 협업필터링 알고리즘보다 추천 성능이 상당히 개선되었으며 앙상블 방법 중에서는 개별 프로파일 유사도 가중 평균 기법이 가장 높은 추천 성능을 보여주었다. 본 연구는 빅데이터 환경에서 추천시스템을 개발하고자 할 때, 어떠한 성격의 데이터로부터 고객의 특성을 규명하는 프로파일을 만들고 이를 어떻게 결합하여 사용하는 것이 효과적인 지 처음으로 제안하였다는 점에서 그 의의가 있다.

플랫폼 기반 비즈니스에 대한 국내 연구동향 및 미래를 위한 가이드라인 (Research Trend and Futuristic Guideline of Platform-Based Business in Korea)

  • 남수현
    • 경영과정보연구
    • /
    • 제39권1호
    • /
    • pp.93-114
    • /
    • 2020
  • 플랫폼은 기존 전통적인 선형적 파이프라인 기반 비즈니스 모델에 대응하는 대안으로 떠오르고 있다. 특히 최근의 4차 산업혁명시대에 효율성 주도의 파이프라인 기반은 조정 주도의 플랫폼 기반으로 변환되어야 한다는 것이 일반적인 인식이다. 플랫폼 성공사례는 애풀, 구글, 아마존, 우버 등에서 쉽게 찾을 수 있다. 그러나 규모가 크지 않은 기업에서는 플랫폼 비즈니스로의 전환 전략을 찾기가 쉽지 않다. 플랫폼 비즈니스의 핵심은 네트워크 효과를 경영활동에 도입하여 활용하는 것이다. 따라서 플랫폼 비즈니스는 경영활동 기능에서 네트워크 효과 관리를 어떻게 할 것인가와 유사하다. 플랫폼 관련 연구는 최근 활발하고 다양하다. 그러나 이 분야의 연구 동향에 대한 연구는 많지 않다. 본 연구의 주요 목적은 최근 국내에서 수행된 플랫폼 관련 연구를 통하여 연구동향을 이해하는 것이다. 이를 위해서 우리는 연구가설과 명제를 제시하였다. 데이터는 연구논문으로 한국학술지인용색인 시스템에서 "플랫폼" 혹은 "platform"을 키워드 속성으로부터 얻었다. 수집된 논문집합은 "경영학" 분야로 국한하여 구성하였다. 선택된 논문들을 대상으로 연구된 플랫폼 요소, 플랫폼 유형, 주요 연구 내용 등에 대해 56개의 논문에 대해 분석을 하였다. 56개의 데이터를 이용하여 탐색적인 연구가설을 검증하였고, 명제를 제안하였다. 본 연구의 시사점은 연구자들에게 연구 영역 중, 많은 연구가 수행되어 온 성숙 영역과 아직 더 많은 연구가 필요한 분야를 제시하였다. 또한 실무자들에게는 파이프라인 비즈니스로부터 플랫폼 기반 비즈니스로 변화를 추구하는 가이드라인을 제시한 것이다. 가이드라인의 핵심은 극대화하기 위해서는 IT플랫폼 시스템을 기반으로 소비자와 공급자 네트워크를 점진적으로 조정하고 관리하여야 한다는 것이다. 본 연구는 데이터 수집과 수집된 데이터의 구분 및 주요 연구내용 등 주관적인 판단 요소가 많아 추론적이 아닌 탐색적 연구로 간주되어야 할 것이다.

연구주제 분석을 통한 한국창작무용 경향 탐색 : 텍스트 마이닝의 적용 (Exploring the Trend of Korean Creative Dance by Analyzing Research Topics : Application of Text Mining)

  • 유지영;김우경
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제14권6호
    • /
    • pp.53-60
    • /
    • 2020
  • 이 연구는 현상의 흐름과 연구의 경향이 맥락적으로 일치한다는 가정을 바탕에 두고 있다. 이에 텍스트 마이닝을 활용하여 한국창작무용 연구의 주제 분석을 통해 춤의 경향을 탐색하는 것에 목적이 있다. 이에 논문 검색 웹사이트에 구축되어 있는 616편의 논문제목에서 1,291개의 단어를 분석하였다. 데이터의 수집 및 정제, 분석은 모두 R 3.6.0 SW을 사용하였다. 연구결과 첫째, 2000년대 이전에는 시대를 나타내는 키워드가 높은 빈도를 나타내었으나 교육 및 신체훈련 측면에서의 한국창작무용 연구유형도 발견되었다. 둘째, 2000년대 이후에는 무용단의 공연활동과 관련된 키워드의 빈도가 높게 나타났으나 최승희가 여전히 한국창작무용 연구에서 중요한 위치에 있다는 것이 확인되었다. 셋째, 한국창작무용 연구의 전체 연구주제를 분석한 결과 '근대시대 최승희의 예술', '현대 전통의 수용 양상과 가치', '전통춤의 안무적 표현 및 활용', '국립무용단의 공연 활동', '시대별 춤 표현', '교육 프로그램의 적용'으로 총 6개의 토픽이 추출되었다. 이 중 '근대시대 최승희의 예술'에 관한 연구가 가장 높은 비중을 차지하고 있는 것으로 나타났다. 넷째, 2000년을 기준으로 상승하고 있는 Hot 토픽은 '국립무용단의 공연 활동'과 '전통춤의 안무적 표현 및 활용'으로 나타났다. 그러나 최근 국립무용단의 공연 기조가 '전통을 기반으로 한 현대화'를 표방하고 있으므로 2000년대 이후 한국창작무용의 경향이 전통춤을 모티프로 한 안무적 표현과 그 활용에 공통적으로 집중되어 있음이 확인되었다. 다섯째, 2000년을 기준으로 하락하고 있는 Cold 토픽은 '시대별 춤 표현'에 관한 연구로 나타났다. 이것은 한국창작춤의 장르적 정착 이후 다양한 춤 스타일의 혼재에 따른 경향으로 연구에 대한 관심도 역시 저하된 것으로 판단되었다.

모바일 랜드마크 가이드 : LOD와 문맥적 장치 기반의 실외 증강현실 (A Mobile Landmarks Guide : Outdoor Augmented Reality based on LOD and Contextual Device)

  • 조비성;누르지드;장철희;이기성;조근식
    • 지능정보연구
    • /
    • 제18권1호
    • /
    • pp.1-21
    • /
    • 2012
  • 최근 스마트폰의 등장으로 인해 사용자들은 시간과 공간의 제약 없이 스마트폰을 이용한 새로운 의사소통의 방법을 경험하고 있다. 이러한 스마트폰은 고화질의 컬러화면, 고해상도 카메라, 실시간 3D 가속그래픽과 다양한 센서(GPS와 Digital Compass) 등을 제공하고 있으며, 다양한 센서들은 사용자들(개발자, 일반 사용자)로 하여금 이전에 경험하지 못했던 서비스를 경험할 수 있도록 지원하고 있다. 그 중에서 모바일 증강현실은 스마트폰의 다양한 센서들을 이용하여 개발할 수 있는 대표적인 서비스 중 하나이며, 이러한 센서들을 이용한 다양한 방법의 모바일 증강현실 연구들이 활발하게 진행되고 있다. 모바일 증강현실은 크게 위치 정보 기반의 서비스와 내용 기반 서비스로 구분할 수 있다. 위치 정보 기반의 서비스는 구현이 쉬운 장점이 있으나, 증강되는 정보의 위치가 실제의 객체의 정확한 위치에 증강되는 정보가 제공되지 않는 경우가 발생하는 단점이 존재한다. 이와 반대로, 내용 기반 서비스는 정확한 위치에 증강되는 정보를 제공할 수 있으나, 구현 및 데이터베이스에 존재하는 이미지의 양에 따른 검색 속도가 증가하는 단점이 존재한다. 본 논문에서는 위치 정보 기반의 서비스와 내용기반의 서비스의 장점들을 이용한 방법으로, 스마트폰의 다양한 센서(GPS, Digital Compass)로 부터 수집된 정보를 이용하여 데이터베이스의 탐색 범위를 줄이고, 탐색 범위에 존재하는 이미지들의 특징 정보를 기반으로 실제의 랜드마크를 인식하고, 인식한 랜드마크의 정보를 링크드 오픈 데이터(LOD)에서 검색하여 해당 정보를 제공하는 랜드마크 가이드 시스템을 제안한다. 제안하는 시스템은 크게 2개의 모듈(랜드마크 탐색 모듈과 어노테이션 모듈)로 구성되어있다. 첫 번째로, 랜드마크 탐색 모듈은 스마트폰으로 인식한 랜드마크(건물, 조형물 등)에 해당하는 정보들을 (텍스트, 사진, 비디오 등) 링크드 오픈 데이터에서 검색하여 검색된 결과를 인식한 랜드마크의 정확한 위치에 정보를 제공하는 역할을 한다. 스마트폰으로부터 입력 받은 이미지에서 특징점 추출을 위한 방법으로는 SURF 알고리즘을 사용했다. 또한 실시간성을 보장하고 처리 속도를 향상 시키기 위한 방법으로는 입력 받은 이미지와 데이터베이스에 있는 이미지의 비교 연산을 수행할 때 GPS와 Digital Compass의 정보를 사용하여 그리드 기반의 클러스터링을 생성하여 탐색 범위를 줄임으로써, 이미지 검색 속도를 향상 시킬 수 있는 방법을 제시하였다. 두 번째로 어노테이션 모듈은 사용자들의 참여에 의해서 새로운 랜드마크의 정보를 링크드 오픈 데이터에 추가할 수 있는 기능을 제공한다. 사용자들은 키워드를 이용해서 링크드 오픈 데이터로에서 관련된 주제를 검색할 수 있으며, 검색된 정보를 수정하거나, 사용자가 지정한 랜드마크에 해당 정보를 표시할 수 있도록 지정할 수 있다. 또한, 사용자가 지정하려고 하는 랜드마크에 대한 정보가 존재하지 않는다면, 사용자는 랜드마크의 사진을 업로드하고, 새로운 랜드마크에 대한 정보를 생성하는 기능을 제공한다. 이러한 과정은 시스템이 카메라로부터 입력 받은 대상(랜드마크)에 대한 정확한 증강현실 컨텐츠를 제공하기 위해 필요한 URI를 찾는데 사용되며, 다양한 각도의 랜드마크 사진들을 사용자들에 의해 협업적으로 생성할 수 있는 환경을 제공한다. 본 연구에서 데이터베이스의 탐색 범위를 줄이기 위해서 랜드마크의 GPS 좌표와 Digital Compass의 정보를 이용하여 그리드 기반의 클러스터링 방법을 제안하여, 그 결과 탐색시간이 기존에는 70~80ms 걸리는 반면 제안하는 방법을 통해서는 18~20ms로 약 75% 정도 향상된 것을 확인할 수 있었다. 이러한 탐색시간의 감소는 전체적인 검색시간을 기존의 490~540ms에서 438~480ms로 약 10% 정도 향상된 것을 확인하였다.

국내 프로축구 팬들의 유니폼 소비 분석: 손흥민의 토트넘 홋스퍼 FC 이적 전후 비교 (Analysis of Football Fans' Uniform Consumption: Before and After Son Heung-Min's Transfer to Tottenham Hotspur FC)

  • 최영현;이규혜
    • 지능정보연구
    • /
    • 제26권3호
    • /
    • pp.91-108
    • /
    • 2020
  • 박지성 선수의 2005년 맨체스터 유나이티드 FC 입단 이후로, 국내에서 프로축구 유니폼 시장이 본격적으로 성장하기 시작했다. 이후, 국내 선수들의 해외 리그에서 활약이 계속되면서 국내에서도 잉글랜드 프리미어리그에 대한 대중의 관심이 지속되고 있다. 이러한 시점에서 본 연구는 국내 프로축구 팬들의 유니폼 소비에 전반적인 소비자 인식을 알아보고, 선수의 영입에 따른 소비자 인식 변화를 비교하고자 했다. EPL의 토트넘에서 활동하고 있는 손흥민 선수의 영입 전후를 중심으로 소셜 미디어에 나타난 프로축구 팬들의 소비자 인식과 구매 요인을 알아보았다. 'EPL 유니폼'을 키워드로, 국내 포털사이트와 소셜 미디어의 게시글을 수집하고, 텍스트 마이닝, SNA, 회귀분석을 사용하여 분석했다. 연구 결과, 첫째, 선수의 소속 팀, 실적, 포지션과 구단의 실적, 순위, 리그의 우승 여부가 프로축구 유니폼의 구매와 탐색에 있어 주요 요인으로 확인되었다. 가격, 디자인, 사이즈, 로고 등과 같은 항목보다 유니폼의 형태, 마킹, 정품 여부, 스폰서와 더 중요하게 작용하고 있었다. 둘째, 구조적 등위성 분석과 군집분석을 통해 국내 프로축구 팬들 사이에서 유니폼과 관련되어 언급되고 있는 주요 주제를 알아본 결과, EPL에 소속된 구단과 유명 선수들이 가장 핵심적인 주제로 나타났다. 셋째, 프로축구 유니폼에 대한 시기별 주제는 월드컵과 EPL 리그에 대한 관심에서 EPL에서 활동하는 다양한 국내외 선수들에 대한 관심으로, 2015년 이후에는 유니폼 자체에 대한 것으로 주제가 변화했다. 이를 통해, 선수들의 이적에 따라 선수가 소속된 해당 구단의 유니폼이 관심을 받고 있음을 알 수 있었다. 넷째, 남녀 소비자 모두 손흥민에 대한 관심이 증가함에 따라서 토트넘이 소속된 리그인 EPL에 대한 관심도 증가하는 것으로 나타났다. 여성의 경우 손흥민에 대한 관심이 증가함에 따라 축구 유니폼에 대해서도 관심을 가지는 것으로 나타난 반면, 남성의 경우 손흥민 선수에 대한 관심과 축구 유니폼에 대한 관심 사이의 관계가 유의하게 나타나지 않았다. 각 구단은 선수와 구단의 성적과 이미지 관리, 스폰서 브랜드 관리에 집중하고, 선수의 이적이 결정되면 선수의 자국에 해당 물량의 공급을 늘리며, 인기를 끌고 있는 선수의 등번호가 부착된 유니폼의 경우에는 여성을 위한 다양한 사이즈를 제공해야 할 필요가 있다.

비정형 빅데이터의 실시간 복합 이벤트 탐지를 위한 기법 (The Method for Real-time Complex Event Detection of Unstructured Big data)

  • 이준희;백성하;이순조;배해영
    • Spatial Information Research
    • /
    • 제20권5호
    • /
    • pp.99-109
    • /
    • 2012
  • 최근 소셜 미디어의 발달과 스마트폰의 확산으로 SNS(Social Network Service)가 활성화가 되면서 데이터양이 폭발적으로 증가하였다. 이에 맞춰 빅데이터 개념이 새롭게 대두되었으며, 빅데이터를 활용하기 위한 많은 방안이 연구되고 있다. 여러 기업이 보유한 빅데이터의 가치창출을 극대화하기 위해 기존 데이터와의 융합이 필요하며, 물리적, 논리적 저장구조가 다른 이기종 데이터 소스를 통합하고 관리하기 위한 시스템이 필요하다. 빅데이터를 처리하기 위한 시스템인 맵리듀스는 분산처리를 활용하여 빠른게 데이터를 처리한다는 이점이 있으나 모든 키워드에 대해 시스템을 구축하여 저장 및 검색 등의 과정을 거치므로 실시간 처리에 어려움이 따른다. 또한, 이기종 데이터를 처리하는 구조가 없어 복합 이벤트를 처리하는데 추가 비용이 발생할 수 있다. 이를 해결하는 방안으로 기존에 연구된 복합 이벤트 처리 시스템을 활용하여 실시간 복합 이벤트 탐지를 위한 기법을 제안하고자 한다. 복합 이벤트 처리 시스템은 서로 다른 이기종 데이터 소스로부터 각각의 데이터들을 통합하고 이벤트들의 조합이 가능하며 스트림 데이터를 즉시 처리할 수 있어 실시간 처리에 유용하다. 그러나 SNS, 인터넷 기사 등 텍스트 기반의 비정형 데이터를 텍스트형으로 관리하고 있어 빅데이터에 대한 질의가 요청될 때마다 문자열 비교를 해야 하므로 성능저하가 발생할 여지가 있다. 따라서 복합 이벤트 처리 시스템에서 비정형 데이터를 관리하고 질의처리가 가능하도록 문자열의 논리적 스키마를 부여하고 데이터 통합 기능을 제안한다. 그리고 키워드 셋을 이용한 필터링 기능으로 문자열의 키워드를 정수형으로 변환함으로써 반복적인 비교 연산을 줄인다. 또한, 복합 이벤트 처리 시스템을 활용하면 인 메모리(In-memory)에서 실시간 스트림 데이터를 처리함으로써 디스크에 저장하고 불러들이는 시간을 줄여 성능 향상을 가져온다.

인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝 (Clickstream Big Data Mining for Demographics based Digital Marketing)

  • 박지애;조윤호
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.143-163
    • /
    • 2016
  • 인구통계학적 정보는 디지털 마케팅의 핵심이라 할 수 있는 인터넷 사용자에 대한 타겟 마케팅 및 개인화된 광고를 위해 고려되는 가장 기초적이고 중요한 정보이다. 하지만 인터넷 사용자의 온라인 활동은 익명으로 행해지는 경우가 많기 때문에 인구통계특성 정보를 수집하는 것은 쉬운 일이 아니다. 정기적인 설문 조사를 통해 사용자들의 인구통계특성 정보를 수집할 수도 있지만 많은 비용이 들며 허위 기재 등과 같은 위험성이 존재한다. 특히, 모바일 환경에서는 대부분의 사용자들이 익명으로 활동하기 때문에 인구통계특성 정보를 수집하는 것은 더욱 더 어려워지고 있다. 반면, 인터넷 사용자의 온라인 활동을 기록한 클릭스트림 데이터는 해당 사용자의 인구통계학적 정보에 활용될 수 있다. 특히, 인터넷 사용자의 온라인 행위 특성 중 하나인 페이지뷰는 인구통계학적 정보 예측에 있어서 중요한 요인이 된다. 본 연구에서는 기존 선행 연구를 토대로 클릭스트림 데이터 분석을 통해 인터넷 사용자의 온라인 행위 특성을 추출하고 이를 해당 사용자의 인구통계학적 정보 예측에 사용한다. 또한, 1)의사결정나무를 이용한 변수 축소, 2)주성분분석을 활용한 차원축소, 3)군집분석을 활용한 변수축소의 방법을 제안하고 실험에 적용함으로써 많은 설명변수를 이용하여 예측 모델 생성 시 발생하는 차원의 저주와 과적합 문제를 해결하고 예측 모델의 정확도를 높이고자 하였다. 실험 결과, 범주의 수가 많은 다분형 종속변수에 대한 예측 모델은 모든 설명변수를 사용하여 예측 모델을 생성했을 때보다 본 연구에서 제안한 방법론들을 적용했을 때 예측 모델에 대한 정확도가 향상됨을 알 수 있었다. 본 연구는 클릭스트림 분석을 통해 추출된 인터넷 사용자의 온라인 행위는 해당 사용자의 인구통계학적 정보 예측에 활용 가능하며, 예측된 익명의 인터넷 사용자들에 대한 인구통계학적 정보를 디지털 마케팅에 활용 할 수 있다는데 의의가 있다. 또한, 제안 방법론들을 통해 어느 종속변수에 대해 어떤 방법론들이 예측 모델의 정확도를 개선하는지 확인하였다. 이는 추후 클릭스트림 분석을 활용하여 인구통계학적 정보를 예측할 때, 본 연구에서 제안한 방법론을 사용하여 보다 높은 정확도를 가지는 예측 모델을 생성 할 수 있다는데 의의가 있다.